There must be another way! The common mistakes are...

MATHEMATICAL

I've never noticed that before!

This picture shows...

by GARETH METCALFE

Instant digital download in PDF format

I SEE REASONING - UKS2

Contents

Introduction

Place value
Place value - decimals
Place value - negative numbers
Place value - rounding
Addition and subtraction
Multiplication
Division
Fractions
Fractions $+-x \div$
Ratio and proportion
Algebra
Measures
Measures - volume
Measures - area and perimeter
Geometry - shape
Geometry - angle
Geometry - coordinates
Statistics
Statistics - average

Answers

I SEE REASONING - UKS2

Tasks for enriching mathematical talk Introduction

I See Reasoning - UKS2 is written to provide rich, open contexts for mathematical discussion and enquiry.

Children apply their current understanding to solve 'I know... so...' questions. They discuss key concepts to respond to 'Rank by difficulty' tasks. Friends work systematically to find all possible solutions for the 'How many ways?' challenges.

The resource is comprised of 176 varied tasks, linked to all different areas of the upper KS2 mathematics curriculum. These activities correspond to US grades 4-5 and Australia year 5-6 objectives. Screenshots of tasks can be used within presentations or printed and given to children.

I hope that I See Reasoning enriches the maths learning in your classroom!

Gareth Metcalfe

For use by the purchasing institution only. Copyright I See Maths Itd. Circulation is prohibited.

True or false?

2 ten-thousands and 120 hundreds
Three thousand and two-thousand

32000
32 hundreds

Rank by difficulty

Write in numbers:

Thirty-thousand five-hundred

Thirty-five thousand

Thirty-thousand and fifty

Spot the pattern Write in words:

604
6040
60400
604000

Spot the pattern
Write in words:
7005
70050
700500
7005000

Number lines
Show the position of $\mathbf{8 0 0 0}$ on each number line.

Number lines
Show the position of $\mathbf{7 0 0 0 0}$ on each number line.

Different ways
What could the start and end numbers be? 683000

Different ways
What could the start and end numbers be?
4620

Estimate
Estimate the position of the arrow.

Investigate

The sum of the digits for a 3-digit number is larger than the sum of the digits for a 2-digit number.

Make the two numbers using digits 0-9 (no repeats). Minimise the difference between the numbers.

Investigate

The sum of the digits for a 4-digit number is larger than the sum of the digits for a 3-digit number.

Make the two numbers using digits 0-9 (no repeats). Minimise the difference between the numbers.

True or false?

Explain

Put the following in order from fewest to most:
A - seconds in January
B - people at an English Premier League football match
C - people living in Wales
D - days in a decade

Number lines

Show the position of $\mathbf{0 . 4 3}$ on each number line.

\mathbf{T}	T
0	1
\mathbf{T}	0.5
$\mathbf{T} .3$	0.5

Number lines
Show the position of $\mathbf{0 . 0 6}$ on each number line.

How many ways?

You have a pile of 1 coins and a pile of 0.1 coins. Make 2.4

0.1

Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

How many ways?

You have a pile of 0.1 coins and a pile of 0.01 coins.
Make 0.32
0.1
0.01

Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

Different ways
What could the start and end numbers be?
0.36

Spot the pattern
5 less than 22 is 17
5 less than 12 is
5 less than 2 is \qquad
5 less than -8 is

Rank by difficulty
What is the difference between:
-70 and 120

> -70 and -20
-70 and 160

Estimate

Estimate the value of the hidden numbers.

Estimate

Estimate the value of the hidden numbers.

Draw

Draw an arrow to show the position of each number.

$$
-25,36,-17
$$

Different ways
The difference between a number and -7 is 12 .
What could the number be?
There are two possible answers!

Show your thinking using the number line.

Explain

'The difference between two numbers can be greater than their sum.'

Explain why this is true when one of the numbers is negative.

Different ways

29 is the first number of a sequence.
-3 is the first negative number in the sequence.
Write the first three terms of the sequence.
There is more than one way!

Example:

16, 13, 10...
These are the first three terms in a sequence. 16 is the first number of the sequence.
-2 is the first negative number in the sequence.

True or false?

'Halving a negative number can make it positive.'
'Halving a negative number makes it bigger.'

Which answer?
What is the largest whole number that, when rounded to the nearest 10 , is 400 ?
(a) 404
(b) 399
(c) 449
(d) 404.9

Which answer?
What is the smallest whole number that, when rounded to the nearest 100 , is 3000 ?
(a) 3001
(b) 2950
(c) 2500

I know... so...
745 rounded to the nearest 10 is $\mathbf{7 5 0}$
745 rounded to the nearest 100 is \qquad
396 rounded to the nearest 10 is \qquad
396 rounded to the nearest 100 is

I know... so...
2074 rounded to the nearest 10 is $\mathbf{2 0 7 0}$
2074 rounded to the nearest 50 is \qquad
3165 rounded to the nearest 10 is \qquad
3165 rounded to the nearest is 3160

Explain the mistakes

What is 6352 to the nearest 100?
Mistake 1: 400
Mistake 2: 6350
Mistake 3: 6300

Explain
'Numbers can be far apart yet round to the same number'.

Explain, with examples, how this is true.

Explore

When rounded to the nearest $\square E$ is 400 .
What is the largest whole number E can be?

Explore

A and B are whole numbers.
Rounded to the nearest 100, A is 500
Rounded to the nearest $10, B$ is 350
What is the smallest possible difference between A and B ?

How many ways?

When rounded to the nearest $10, \mathrm{C}$ and D make the same number.
The difference between C and D is 7 . Rounded to the nearest $100, C$ is 100 and D is 200. What are the possible values of C and D ?

Level 1: I can find a combination for C and D
Level 2: I can find different combinations for C and D
Level 3: I know how many combinations there are for C and D

Rank by difficulty
2001-48
130-48
1999-48

Rank by difficulty
$2996+1650$

$$
3461+2537
$$

4837 + 2189

I know... so...
$200-15=185$
2000-15 =
$20000-15=$
I know... so...
$5001-2998=$
$5000-3000=2000$
$5003-\ldots=1994$

Broken calculator

'The 9 and 5 keys on my calculator are broken!' How can I use it to work out:

$$
\begin{aligned}
& 997+995 \\
& 457-192 \\
& 195+165
\end{aligned}
$$

Explain the mistakes

Mistake 1
$12.4+6.35$
18.39

Mistake 2
$12.4+6.35$
$\begin{array}{r}12.4 \\ +6.35 \\ \hline 7.59 \\ \hline\end{array}$

Mistake 3
537-294

$$
\begin{array}{r}
537 \\
-294 \\
\hline 363
\end{array}
$$

Investigate

Stage 1: complete using digits 0-9
Stage 2: complete using digits 1, 2, 3, 5, 6, 7, 9

Investigate

Stage 1: complete using digits 0-9
Stage 2: complete with the units digit of the first number smaller than the units digit of the second number

How many ways?

Complete using digits 1-9. Use the 7 as shown.

Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

Explain

$100-\mathrm{h}>40$
$20+h>60$
h is a multiple of 6
List all the numbers h can be.

Explain the mistakes

Mistake 1
$3.4 \times 100=3.400$

Mistake 3
$35 \div 10=350$

Mistake 2
$0.7 \times 100=700$

Mistake 4
$6.4 \times 10=60.4$

Explain the mistakes

63×27

Mistake 1
$60 \times 20=1200$
$3 \times 7=21$
$|200+2|=1221$

Mistake 2

$$
|20+420+60+21=62|
$$

Explain the mistakes

163×27

Mistake 1
$\begin{array}{r}163 \\ \times 27 \\ \hline 1141 \\ 326 \\ \hline 1467\end{array}$
Mistake 2
$\begin{array}{r}163 \\ \times 27 \\ \hline 721 \\ 2260 \\ \hline 2981\end{array}$

I know... so...
$24 \times 18=432$
$25 \times 18=$
$25 \times 17=$

I know... so...
$25 \times 48=$
$100 \times 48=4800$

$$
\times 48=4848
$$

I know... so...
$60 \times 85=$
$240 \times 85=20400$
$242 \times 85=$

Broken calculator
'The 8 and 2 keys on my calculator are broken!' How can I use it to work out:

$$
\begin{aligned}
& 50 \times 28 \\
& 25 \times 18
\end{aligned}
$$

Rank by difficulty
49×8

17×8

25×8

Matching number sentences

+ or - number sentence	x number sentence
$12+12+18$	6×7
$35+14+7$	
$160-16$	12×8

Is it the same?
11×11

Is it the same?
$800+160$

$$
240 \times 2 \times 2
$$

Is 24×40 the same as...
6×160
$20 \times 40 \times 4$

3 ways 14×9

$63+63=126$

$140-14=126$

Find 3 ways to calculate $\mathbf{1 5 \times 8}$:

True or false?

$17 \times 13=15 \times 15$

What do you notice?
Try other examples. Do you see a pattern?

How many ways?

Complete using digits 0-9. The digit in the box with a border must be odd.

Level 1: I can find a way
Level 2: I can find different ways
Level 3 : I know how many ways there are

How many ways?

Complete using digits 0-9. Position the digit 1 as shown.

Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

Missing digits

$\square 8 \square$
 $\times 9$
 7047

Missing digits

Missing digits

Missing digits

Explain

Which can be completed in more ways?

Explore

Put a number in each section of the Venn diagram.

How many numbers can go in the middle section?

Explore

Position the headings. Put a number in each section.

Headings:
Multiples of 7
Multiples of 3
Multiples of 12
Even numbers

True or false?

'Odd square numbers greater than
1 have three factors.'

Rank by difficulty

$$
693 \div 7
$$

$300 \div 7$

$287 \div 7$

$5600 \div 7$

Rank by difficulty

$200 \div 24$

$500 \div 24$
$120 \div 24$
$72 \div 24$

I know... so...
$78 \div 6=$
$74 \div 6=12$ remainder 2

$$
\div 6=11 \text { remainder } 5
$$

I know... so...
$288 \div 12=$
$300 \div 12=25$

$$
\div 12=25 \frac{1}{6}
$$

I know... so...

$$
45 \div 8=
$$

$$
46 \div 8=5 \frac{3}{4}
$$

$$
\div 8=6 \frac{1}{8}
$$

Explain the mistakes
Mistake 1
121
$3 \longdiv { 5 6 4 }$

Mistake 2
$\frac{194 n 2}{5^{2} 6^{1} 4}$
$564 \div 3$
Mistake 3
$\frac{187}{3 \longdiv { 5 ^ { 2 } 6 ^ { 2 } 4 }}$

Explain the mistakes $544 \div 16$
Mistake 1
Mistake 2

$$
\begin{aligned}
& 1 6 \longdiv { 5 4 4 } \\
& \frac{-480}{164}(16 \times 30) \\
& \frac{-160}{4}(16 \times 10) \\
& =40 r 4
\end{aligned}
$$

$1 6 \longdiv { 5 4 4 }$

$$
\frac{-480}{64}(16 \times 30)
$$

$$
\frac{-54}{10}(16 \times 4)
$$

$$
=34 r 10
$$

Explain the mistakes $3432 \div 24$

Mistake 1

Mistake 2

$$
\begin{array}{r}
13 \\
24 \begin{array}{r}
3432 \\
24 \\
\hline 103 \\
72 \\
312 \\
?
\end{array}
\end{array}
$$

Form of answer

It took Fiona 93 hours to write a children's book. She worked for 12 days. On average, how long did she spend writing each day?

(a) 7.9 hours

(b) 8 hours
(c) 7 hours 45 minutes

Form of answer
 $$
\frac{13 n}{6 \longdiv { 8 ^ { 2 } 2 }}
$$

Question

Eggs are packed in boxes of 6. The farmer has 82 eggs. How many boxes does he need?

Answer
14 boxes,

A sunflower grows to a height of 82 cm in 6 weeks. On average, how many centimetres does it grow each week?

82 children turn up for a 6-a-side football tournament. How many teams can be made? Teams can have substitutes.

An artist works on a masterpiece for 82 hours over 6 days. On average, how long does she work each day?

Broken calculator

'The 7 and 5 keys on my calculator are broken!' How can I use it to work out:

$$
\begin{aligned}
& 160 \div 5 \\
& 72 \div 4
\end{aligned}
$$

True or false?

'It's impossible to divide a number by 3 more than twice without leaving a remainder.'
Explain using examples.

How many ways?

$$
60 \div \ldots=12 \div
$$

Complete using positive whole numbers.
Level 1 : I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

How many ways?

Level 1: complete using digits 0-9. $\div=\quad$ remainder

Level 2: complete, using the 7 as 2 as shown. $\div 7=\quad$ remainder 2

Level 3: how many ways can level 2 be done?

How many ways?

Complete using digits 0-9. Position the digits 1, 2 and 4 as shown.

Level 2: I can find different ways
Level 3: I know how many ways there are

True or false?

Explain the mistake

Explain

Which fractions do you see?

Explain

Different ways
Which fractions could be at either end of the number line?

How many ways?

Complete the fractions using three of the number cards.

I know... so...

$$
2 \frac{1}{5}=\frac{\square}{5}
$$

$$
2 \frac{4}{5}=\frac{14}{5}
$$

$$
3 \frac{1}{5}=\frac{\square}{\square}
$$

Explain
How many quarters in $3 \frac{1}{2}$?

(a) 14
(b) 2
(c) 7

Explore

Write these fractions in the correct section of the Venn diagram: $\quad \frac{3}{6} \quad \frac{4}{10} \quad \frac{3}{5} \quad \frac{7}{8}$

Add some of your own fractions

Different ways

Fill in the gaps. Find different ways.

$$
\begin{aligned}
& \frac{5}{4}=\square \frac{\square}{4} \\
& \frac{\square}{4}=\square \frac{\square}{4} \\
& \frac{\square}{4}=\square \frac{\square}{4}
\end{aligned}
$$

Different ways
Use the digits $2,3,4,5,6$.
How many fractions can be made for each section?
1

$\|c\| c \mid$	A	B	\mid
0	0.25	0.5	
Example: $\frac{2}{3}$ is in section C			

How many ways?
Make all the fractions that are more than 50% and less than $\mathbf{7 5 \%}$ using these digits:

$$
3,4,5,6,8
$$

I know... so...

$$
\frac{1}{7} \text { of } 168=
$$

$$
\frac{2}{7} \text { of } 168=48
$$

$$
\frac{2}{7} \text { of } \square=96
$$

I know... so...

$$
\begin{aligned}
& \frac{1}{8} \text { of } 248=\square \\
& \frac{1}{4} \text { of } 248=62 \\
& \frac{3}{4} \text { of } 248=\square
\end{aligned}
$$

Different ways
Fill in the gaps. Find different ways.
$\frac{2}{5}$ of $\square 60=24 \quad \frac{2}{\square}$ of $\square=24$

Which picture?
Draw lines to match the questions to the bar models:

$$
60 \div 4
$$

$\frac{3}{4}$ of a number is 60 .
What is the number?

$$
\frac{3}{4} \text { of } 60
$$

Explain the mistake

$$
\frac{3}{6}+\frac{1}{3}=\frac{4}{9}
$$

Rank by difficulty

$$
\frac{3}{9}+\frac{7}{9} \quad \frac{3}{6}+\frac{5}{10}
$$

$$
\frac{1}{5}+\frac{3}{10}
$$

$$
\frac{4}{7}+\frac{2}{7} \quad \frac{1}{3}+\frac{2}{5}
$$

How many ways?

The answer must be a proper fraction

Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

How many ways?
$\frac{1}{5}+\frac{2}{\square}=\frac{\square}{20}$
The answer must be a proper fraction

Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

Explain the mistake

$$
\frac{3}{4} \times 5=\frac{15}{20}
$$

Rank by difficulty

$$
\frac{1}{4} \times 5 \quad \frac{3}{10} \times 3
$$

I know... so...

$$
\begin{aligned}
& \frac{3}{5} \times 4=\square \frac{\square}{\square} \\
& \frac{3}{5} \times 6=3 \frac{3}{5} \\
& \frac{3}{5} \times 7=\square \frac{\square}{\square}
\end{aligned}
$$

Explain

Explain how this picture shows $\frac{1}{4} \times \frac{1}{3}$

How many ways?

Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

Rank by difficulty

$$
\frac{2}{3} \div 4
$$

$\frac{4}{5} \div 4$

$$
\frac{1}{5} \div 4
$$

I know... so...

$$
\begin{aligned}
& \frac{3}{4} \div 2=\frac{3}{8} \\
& \frac{3}{4} \div 3=\frac{1}{\square} \\
& \frac{3}{4} \div 4=\frac{\square}{16}
\end{aligned}
$$

Which picture?

$\frac{2}{3}$ of the children in the running club are girls. There are 45 children in the running club.
How many girls are in the running club?
Which drawing(s) represent this question correctly?

gints boys,
girls, \square boys \square

girls boys

Which picture?
For every five children in the school who are right-handed, there is one left-handed child. There are 300 right-handed children in the school. How many left-handed children?

Who do you agree with?

Jen's method 300

LH 60
60 left-handed
Rhian's method

Different ways

To calculate 85% of 260 you have worked out:

$$
\begin{aligned}
& 50 \%=130 \\
& 25 \%=65 \\
& 10 \%=26 \\
& 5 \%=13
\end{aligned}
$$

Using this information, calculate $\mathbf{8 5 \%}$ of 260 in three different ways.

Explain
Here is a sequence of numbers: $\mathbf{3 , 1 0 , 1 7 \ldots}$

> 170 is in this sequence
> as $10 \times 17=170$

Do you agree with this statement?

Explain

Here is a sequence of numbers: $1,5,9,13 \ldots$

> 26 is in the sequence because it is double 13

Explain why this statement is incorrect.

If I know... then I know...

$$
6 e+4=f
$$

When $e=6, f=\square$
When $e=8, f=52$
When $e=\square f=58$

Which answer?
$3 c-4=d$
When $c=6$, what is the value of d ?
(a) $d=32$
(b) $\mathbf{d}=\mathbf{1 4}$ Explain how you know.
(c) $d=5$

Which one?

It costs $£ 6$ to hire a wetsuit plus $£ 4$ per hour used.
It costs $£ 4$ to hire a surfboard plus $£ 6$ per hour used. $\mathrm{h}=$ hours used
$£ 4 \mathrm{~h}+£ 6=$ cost to hire a \qquad
$£ 6 \mathrm{~h}+£ 4=$ cost to hire a \qquad
Fill in the gaps with the correct words.

Explain

$100-5 n>60$

\mathbf{n} is a whole number
Level 1: I can find a possible value for n
Level 2: I can find the largest possible value for n

Explain
How many possible values for s in each equation?

Equation	One possible value for s	More than one possible value for s	Infinite possible values for s
$50>6 s$			
$25<20+s$			
$5 s-2=18$			
$5 s+2=\dagger$			

s is a positive whole number

Explain the mistakes

$$
23 \mathrm{~cm}=\underline{2.3 \mathrm{~mm}}
$$

$3.05 \mathrm{~m}=\underline{300.5} \mathrm{~cm}$

$$
740 \mathrm{~m}=\underline{7.4 \mathrm{~km}}
$$

Rank by difficulty
8 kilometres is approximately 5 miles
40 miles $=\ldots \quad$ kilometres

1 kilometre =__ miles

20 kilometres = ___ miles

Explore

Write these measures in the correct section of the Venn diagram:
pounds metres
grams
pints
miles

Add some more units of measure

Explore
Write the headings for the Venn diagram

Add other units of measure to the diagram

Order

Order the following from shortest to longest:
400 minutes $\frac{1}{3}$ of a day
6 hours 18000 seconds

Explain the mistakes

Tom arrived at the airport at $3: 40 \mathrm{pm}$. The drive to the airport took him $\frac{3}{4}$ hour. At what time did Tom set off?

Mistake 1
$\overbrace{3: 40 \mathrm{pm}}^{\text {4:00pm }}$
$4: 25 \mathrm{pm}$

Mistake 2
2.130
-45
2.95

Rank by difficulty

200 minutes $=$
 \qquad hours
 \qquad minutes

200 hours = ___ days ___ hours

200 days $=\ldots$ months ___ days

Estimate

Estimate the length, width and height of each cuboid:

Estimate
The cube is full of water.
The water will be poured into the cuboid.

Estimate the height that the water will reach in the cuboid.

Estimate

Estimate the perimeter of the rectangle:

area $=48 \mathrm{~cm}^{2}$

I know... so...

Explain

Here are two identical rectangles.
Put them together to make one shape. Make the perimeter of the new shape as small as possible.

I know... so...

Explain

The area of the large square is $100 \mathrm{~cm}^{2}$.
The perimeter of the small square is half the perimeter of the large square.
What is the area of the small square?
$100 \mathrm{~cm}^{2}$

Spot the mistake What is the area of the shape?

Draw

Draw a rectangle with...

Different ways
What area is orange?

Can you work it out in different ways?

Which answer?
What is the area of the right-angled triangle?

(a) $6 \mathrm{~cm}^{2}$
(b) $7.5 \mathrm{~cm}^{2}$
(c) $12 \mathrm{~cm}^{2}$

Different ways

The red spot is in the centre of the rectangle.
What is the area of the blue section?

Can you work it out in different ways?

Odd one out

Explore
Write the headings for the Venn diagram

Explore
Write the questions in the branching database:

Fill the gaps
Fill in the missing spaces in the table:

Name of 3D Shape	Edges	
	6	4
Hexagonal prism	\square	8

Fill the gaps
Fill in the missing spaces in the table:

Name of 3D Shape	Faces	
Cuboid	\square	8
	5	6
Square-based pyramid	\square	\square

Different ways

This pyramid is made using four equilateral triangles.
Draw one more triangle on each diagram to complete the net for the pyramid. Find three different ways it can be done.

It is correct?

One more square needs adding to this diagram to make the net of a cube.

Which diagrams have been completed correctly to make the net of a cube?

Explain the mistakes

Mistake 3
Reflect the shape in the mirror line.

Mistake 1

mirror

Mistake 2

mirror

Explain the mistakes
Translate 3 squares to the right and 4 squares up.

Mistake 1

Mistake 2

Explain

Tick the correct box for each example. Explain.

\square The shape has been reflected
\square The shape has been translated
\square The shape may have been translated or reflected
Start position
\square The shape has been reflected
\square The shape has been translated
\square The shape may have been
translated or reflected

Explain

Order the circles from smallest to largest:
A circle with a radius of 8 cm
A circle with a diameter of 14 cm
A circle with a circumference of 25 cm
Explain how you know.

Different ways

'In the isosceles triangle, angle A is double angle B ' What are the possible sizes of angles A and B ?

Explain

I can work out angle A if I know...
Angles C and $D \square$
Angles D and E \square
Tick correct option(s).
Angles C and E \square
Explain how you know.

Different ways

The hands of a clock are 90° apart at 3-o-clock and 9-o-clock.

At what time are the hands of a clock 75° apart?
Find two ways.

Explain the mistakes

Calculate the size of angle G

Explain the mistakes

Different ways

Think of possible coordinates for the blue dot.
Could the coordinates of the blue dot be:
$(5,8)$
$(20,12)$
$(100,110)$

Explain

Which of the vertices can be calculated?

Explain the mistake

Point B is half-way between points A and C.

Calculate the coordinates of Point B.

Explain the mistake

Explain the mistake

Explain

Inside, on the edge or outside the rectangle?

Different ways

Identify coordinates that are on these lines:

Act the graph

Act the graph
Surprise Shown by Facial Expression

Explain

A school have been collecting data about:
The number of animals seen in the nature area. How children travel to school.

Attendance for the six KS2 classes each half-term. In each case, which type of graph should be used to represent the information?

Explain

Marton Vale Primary ran an 'Active Start' project, encouraging children to walk or cycle to school. They wanted to improve children's fitness and reduce traffic congestion around school.

Mode of Travel to School, February

Mode of Travel to School, May

How successful was the 'Active Start' project?

Which answer?

This graph shows the speed of a 400m runner.
What is happening at the point showed by the arrow?

Which answer?

This graph shows the distance travelled by a cyclist.
What is happening at the point showed by the arrow?

Explain

Sam lives in Lancaster. He has a job interview at an office which is a 20 -minute walk from Manchester Piccadilly train station. His interview starts at 10:15am.

Here is the train timetable:

Penrith	$7: 19$	$7: 45$	$8: 11$	$8: 32$
Lancaster	$7: 58$	$8: 24$	$8: 50$	$9: 11$
Preston	$8: 18$	$8: 44$	$9: 10$	$9: 31$
Wigan	$8: 30$	$8: 56$	$9: 22$	$9: 43$
Manchester Piccadilly	$9: 01$	$9: 27$	$9: 53$	$10: 14$
Manchester Airport	$9: 07$	$9: 43$	$10: 09$	$10: 30$

At what time does Sam need to arrive at Lancaster train station?

Explain the mistakes

Three different numbers have an average of 8. What could the numbers be?

Mistake 1

4,3,1

Mistake 2

6,9,9

Mistake 3

8	8	8
14	7	6

$14,7,6$

Explain

There are four 9-year-old children and a teacher in a classroom.

The average age for the five people in the classroom is 12.

How old is the teacher?

How many ways?

The average of three numbers is 9 .
The difference between the smallest and largest number is 5 .

What could the numbers be?

Level 1: I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

How many ways?

The average of four numbers is 13 .
The difference between the smallest and largest number is 7 .

What could the numbers be?

Level 1 : I can find a way
Level 2: I can find different ways
Level 3: I know how many ways there are

I SEE REASONING - UKS2

Answers

Place value

True or false? True - 2 ten-thousands and 120 hundreds; 3200 tens Investigate example 1: 109 \& 72 or $127 \& 90$ - difference of 37 Investigate example 2: 1068 \& 923 - difference of 145

Explain: D, B, A, C (3 652.5 days in decade; football attendances approximately 40 000; 2678400 seconds in January; population of Wales just over 3 million)

Place value - decimals

How many ways example 1: Three ways (two 1s, four 0.1s; one 1, fourteen 0.1 s ; twenty-four 0.1s)
How many ways example 2: Four ways (three 0.1s, two 0.01s; two 0.1s, twelve 0.01s; one 0.1, twenty-two 0.01 s; thirty-two 0.01s)

Place value - negative numbers

Different ways example 1: 5 and -19
Different ways example 2: Subtracting $4(29,25,21 \ldots)$; subtracting $8(29,21,13 \ldots)$; subtracting $16(29,13,-3 \ldots)$; subtracting $32(29,-3,-35 \ldots)$

Place value - rounding

Which answer? example 1: 404
Which answer? example 2: 2950
I know... so... example 1: 700, 400, 400
I know... so... example 2: 2050, 3170, 20
Explore example 1: children may make the hidden number 100, making a largest value for $E=449$. If the hidden number was 400 E could be 599 .

I SEE REASONING - UKS2

Answers

Place value - rounding (continued)
Explore example 2: If $A=450$ and $B=354$, the difference is 96
How many ways? 3 ways (145 \& 152, 146 \& 153,147 \& 154)

Addition and subtraction

Investigate example 1: Example 76+53=129 (note: the digit 1 must be the hundreds value in the 3-digit number)
Investigate example 2: Example 71-23=48
How many ways? 3 ways ($17=8+4+3+2 ; 17=6+5+4+2 ; 27=9+8+6+4$)
Explain: 42, 48, 54

Multiplication

Matching number sentences: Example 35+14+7=7×8; 160-16=16×9;
$80+16=12 \times 8$
True or false? example 1: 15×15 one more than 16×14, four more than 17×13, nine more than 18×12 (note continuing pattern of square numbers, can be investigated further)
How many ways? example 1: 3 ways $(27 \times 3=81 ; 19 \times 3=57 ; 29 \times 3=87)$
How many ways? example 2: 3 ways ($67 \times 3=201 ; 87 \times 3=261 ; 93 \times 7=651$)
Missing digits: $783 \times 9=7047 ; 573 \times 6=3438 ; 253 \times 37=9361 ; 815 \times 64=52160$
Explain: 28 as it has more factors ($1,2,4,7,14,28$) than $34(1,2,17,34)$
Explore: 2 is the only number in the middle (the only even prime)
True or false? False: when the square root of an odd square number is prime it has 3 factors (e.g. 49). Otherwise there are more than 3 factors (e.g. 81 has factors 1,3,9,27,81).

I SEE REASONING - UKS2

Answers

Division

Form of answer example 1:7 hours 45 minutes
Form of answer example 2: sunflower 13.67 cm (2 d.p.); 13 teams; masterpiece 13 hours 40 minutes
True or false? False, e.g. 27
How many ways? example $1: 6$ ways $(60 \div 60=12 \div 12 ; 60 \div 30=12 \div 6$;
$60 \div 20=12 \div 4 ; 60 \div 15=12 \div 3 ; 60 \div 10=12 \div 2 ; 60 \div 5=12 \div 1)$
How many ways? example 2: 2 ways ($30 \div 7=4 \mathrm{r} 2 ; 65 \div 7=9 \mathrm{r} 2$)
How many ways? example $3: 2$ ways $\left(30 \div 4=7 \frac{1}{2} ; 38 \div 4=9 \frac{1}{2}\right)$
Fractions
Explain example 1: $\frac{1}{2}$ green, $\frac{1}{4}$ blue, $\frac{1}{8}$ yellow, $\frac{1}{8}$ red
Explain example 2: $\frac{3}{16}$
Different ways example 1: assuming $\frac{3}{8}$ is in the middle, possible combinations include $\frac{2}{8} \& \frac{4}{8} ; \frac{1}{4} \& \frac{1}{2} ; \frac{1}{8} \& \frac{5}{8} ; 0 \& \frac{3}{4}$
How many ways? example 1: 2 ways ($\left(\frac{6}{8}>\frac{3}{5} ; \frac{5}{8}>\frac{3}{6}\right.$)
Explore: $\frac{3}{5}$ in centre; $\frac{4}{10}$ and $\frac{3}{6}$ in right-side section; $\frac{7}{8}$ in left-side section.
Different ways example 3: Section A no fractions; section B two fractions $\left(\frac{2}{5}\right.$ and $\left.\frac{2}{6}\right)$; section C three fractions $\left(\frac{2}{3}, \frac{3}{5}\right.$ and $\left.\frac{4}{6}\right)$; section D two fractions ($\frac{4}{5}$ and $\frac{5}{6}$).
How many ways? example 2: two ways ($\left(\frac{4}{6}\right.$ and $\frac{5}{8}$)

I SEE REASONING - UKS2

Answers

Fractions +-x \div

How many ways? example $1: 6$ ways $\left(\frac{1}{8}+\frac{1}{8}=\frac{1}{4} ; \frac{2}{8}+\frac{1}{4}=\frac{2}{4} ; \frac{3}{8}+\frac{1}{8}=\frac{2}{4}\right.$;
$\left.\frac{2}{8}+\frac{1}{2}=\frac{3}{4} ; \quad \frac{4}{8}+\frac{1}{4}=\frac{3}{4} ; \quad \frac{5}{8}+\frac{1}{8}=\frac{3}{4}\right)$
How many ways? example 2: 6 ways $\left(\frac{1}{5}+\frac{2}{4}=\frac{14}{20} ; \frac{1}{5}+\frac{2}{5}=\frac{12}{20} ; \frac{1}{5}+\frac{2}{8}=\frac{9}{20}\right.$;
$\left.\frac{1}{5}+\frac{2}{10}=\frac{8}{20} ; \quad \frac{1}{5}+\frac{2}{20}=\frac{6}{20} ; \quad \frac{1}{5}+\frac{2}{40}=\frac{5}{20}\right)$
How many ways? example 3: 4 ways, two using proper fractions and two using improper fractions $\left(\frac{1}{4} \times 15=3 \frac{3}{4} ; \frac{3}{4} \times 5=3 \frac{3}{4} ; \frac{5}{4} \times 3=3 \frac{3}{4}\right.$; $\frac{15}{4} \times 1=3 \frac{3}{4}$)
How many ways? example 4: 4 ways $\left(\frac{1}{4} \times \frac{1}{2}=\frac{1}{8} ; \quad \frac{2}{4} \times \frac{1}{4}=\frac{1}{8} ; \frac{2}{4} \times \frac{1}{2}=\frac{2}{8}\right.$;
$\frac{3}{4} \times \frac{1}{2}=\frac{3}{8}$)

Ratio and proportion

Which picture? example 1: brown and orange images (45 split into 3 equal parts, two of those parts girls and one boys)
Which picture? example 2: Jen's method, recognising 300 as the total number of right-handed children.

Algebra

Which one? £4h+£6=cost to hire wetsuit; £6h+£4=cost to hire surfboard Explain example 1: n can be any value up to a maximum of 7
Explain example 2: $25<20+$ s infinite number of values; $5 \mathrm{~s}-2=18$ one possible value; $5 \mathrm{~s}+2=\dagger$ infinite number of values

I SEE REASONING - UKS2

Answers

Measures

Explore example 1: pounds in centre; miles and pints in left; grams in right; metres on outside.
Explore example 2: metric measures (left); measures of volume (right)
Order: 18000 seconds $=5$ hours, 6 hours, 400 minutes $=6 \frac{2}{3}$ hours,
$\frac{1}{3}$ of day $=8$ hours

Measures - volume

Estimate example 1: first shape could be length $=8 \mathrm{~cm}$, width $=3 \mathrm{~cm}$, height $=3 \mathrm{~cm}$; second shape could be length $=6 \mathrm{~cm}$, width $=3 \mathrm{~cm}$, height $=4 \mathrm{~cm}$
Estimate example 2: volume of cube $=64 \mathrm{~cm}^{3}$; volume of cuboid $108 \mathrm{~cm}^{3}$, estimate to be slightly more than half full.

Measures - area and perimeter

Estimate: based on sides of 8 cm and 3 cm , perimeter $=22 \mathrm{~cm}^{2}$
Explain example 1: join long sides of rectangle with no overlap
Explain example 2: $25 \mathrm{~cm}^{2}$
Draw: Example smaller area and larger perimeter $10 \mathrm{~cm} \times 2 \mathrm{~cm}$ rectangle.
Example same perimeter and larger area $6 \mathrm{~cm} \times 5 \mathrm{~cm}$ rectangle.
Different ways example 1: area $=192.5 \mathrm{~cm}^{2}$
Different ways example 2: area $=36 \mathrm{~cm}^{2}$

I SEE REASONING - UKS2

Answers

Geometry - shape

Explore example 1: Example headings - all sides same length (left); at least one acute angle (right).
Explore example 2: Example headings - top heading 'does the shape have a reflex angle?', left heading 'does the shape have any acute angles?', right heading 'does the shape have two pairs of parallel lines?'
Fill in the gaps example 1 : row 1 -faces; row 2 - triangular pyramid; row 3-18

Fill in the gaps example 2: row 1 - vertices; row $2-6$; row 3 - triangular prism; row 4 - 5 faces, 5 vertices
Different ways:

Is it correct?

Explain example 1: Left - may have been translated or reflected.
Right - reflected.
Explain example 2: smallest is circle circumference of 25 cm ; then circle with a diameter of 14 cm ; largest is circle with a radius of 8 cm .

Geometry - angle
Different ways example 1: Solution 1 - angle $A=90^{\circ}$, angle $B=45^{\circ}$ (third angle is 45°). Solution $2-$ angle $A=72^{\circ}$, Angle $B=36^{\circ}$ (third angle is 72°)
Explain: Tick boxes for angles C and $D \&$ angles C and E
Different ways example 2: 8:30 or 3:30

I SEE REASONING - UKS2

Answers

Geometry - coordinates

Explain example 1: top-right and bottom-right
Explain example 2: $(5,9)$ inside; $(3,7)$ outside; $(9,8)$ edge
Different ways: Examples grey line $(4,8),(3,6)$; examples red line $(4,1),(8,2)$

Statistics

Explain example 1: Consider how bar graph places greater emphasis on quantities (possibly relevant to animals in nature area), whereas pie chart emphasises relative quantities (may suit mode of travel). Line graph can show trends over time, may be used for attendance.
Explain example 2: The proportion walking and getting the bus remain similar. The main change is a reduction in those travelling by car (congestion) and in increase in children using their bike (fitness).
Which answer example 1: The runner slows down
Which answer example 2: The cyclist has stopped
Explain example 3: Getting the 8:50am train from Lancaster means Sam is due to arrive for his interview at 10:13am, only 2 minutes before it starts. It may be advisable, therefore, for Sam to get the 8:24am train. He should arrive at Lancaster station before this departure time.

Statistics - average

Explain the mistakes: Mistake 1 - total of 8 ; mistake 2 - not three different numbers; mistake 3 - bottom row numbers don't total 24 .
Explain: 24 years-old
How many ways? example 1: 2 ways $(6,10,11 \& 7,8,12)$
How many ways? example 2 : 8 ways $(8,14,15,15 ; 9,11,16,16 ; 9,12,15,16$;
$9,13,14,16 ; 10,10,15,17 ; 10,11,14,17 ; 10,12,13,17 ; 11,11,12,18)$

