isosceles triangle angles the same size

More or less than 8?
$\square \div 2<4$

I SEE PROBLEM SOLVING - UKS2

 MATHS TASKS FOR TEACHING PROBLEM-SOLVING
the same length

90 kg	
Ben	Sam
Ben	Jack

Boys

girls that join

GARETH METCALFE

SEE
MATHS
Instant digital download in PDF format

I SEE PROBLEM-SOLVING - UKS2 Contents (tasks $1 \rightarrow 20$)

Introduction
Task 1, Place Value: Sum of the digits
Task 2, Place Value: Decimal number line
Task 3, Rounding: Rounding money
Task 4, Rounding: Rounding puzzles
Task 5, Negative Numbers: Negatives on a number line
Task 6, Negative Numbers: Number sequences
Task 7, Equals, Greater \& Less Than: More, less, equal
Task 8, Equals, Greater \& Less Than: Four number sentences
Task 9, Equals, Greater \& Less Than: Subtraction number sentences
Task 10, Addition and Subtraction: Missing digits addition
Task 11, Addition and Subtraction: Missing digits subtraction
Task 12, Addition and Subtraction: Sum and difference
Task 13, Addition and Subtraction: Four numbers challenge
Task 14, Addition and Subtraction: Café calculations
Task 15, Multiplication and Division: Multiplication missing digits
Task 16, Multiplication and Division: Remainder of one-half
Task 17, Multiplication and Division: Find the factors
Task 18, Property of Number: Number detective
Task 19, Ratio: Athletics club ratios
Task 20, Ratio: Shot accuracy statistics

I SEE PROBLEM-SOLVING - UKS2
 Contents (Tasks $21 \rightarrow 41$)

Task 21, Percentages: Pages read, pages left
Task 22, Percentages: Clothes shop sale
Task 23, Fractions: Fractions of a square
Task 24, Fractions: Adding fractions
Task 25, Fractions: Make one and a quarter
Task 26, Fractions: Fractions of an amount
Task 27, Fractions: Improper fractions
Task 28, Fractions: Make two and a quarter
Task 29, Fractions: Part-finished book
Task 30, Fractions: Fractions and decimals
Task 31, Algebra: Combined weights
Task 32, Algebra: Sports ball weights
Task 33, Algebra: Hiring a surfboard
Task 34, Algebra: Dot pattern sequence
Task 35, Algebra: My secret number
Task 36, Measures: Sorting measures
Task 37, Measures: Time spent driving
Task 38, Measures: Lengths of time
Task 39, Measures: Ticket prices
Task 40, Angle: Missing angles
Task 41, Angle: Isosceles triangle angles

I SEE PROBLEM-SOLVING - UKS2
 Contents (Tasks $42 \rightarrow 58$)

Task 42, Angle: Clock hands angles
Task 43, Area and Perimeter: Change the perimeter
Task 44, Area and Perimeter: Rectangle length
Task 45, Area and Perimeter: Compound shape
Task 46, Area and Perimeter: Combined shapes
Task 47, Area and Perimeter: Triangle area
Task 48, Coordinates: Inside, edge or outside?
Task 49, Coordinates: Which vertices?
Task 50, Shape: Branching database
Task 51, Shape: Cube nets
Task 52, Shape: Cuboid dimensions
Task 53, Shape: Faces, edges, vertices
Task 54, Data: Before/now pie charts
Task 55, Data: Bike race line graphs
Task 56, Data: Train timetables
Task 57, Averages: Average of 3 numbers
Task 58, Averages: Average ages
Answers
I See Maths Resources

I SEE PROBLEM-SOLVING - UKS2 Maths tasks for teaching problem-solving

Introduction

I See Problem-Solving - UKS2 helps all children to learn how to solve multi-step maths questions.

To use, print off the 'Question' page for the chosen task, giving each child a copy of the main question.

On the next page you will find the 'Prompts' for each task print these off and make them available in the classroom. If children need more help they can read the support prompt. For more challenge, the explain and extend features are used.

The worked examples are available for free on this page as a PowerPoint or as a PDF file, modelling the solution to each of the main questions step-by-step.

Task 14 Question: Café calculations
A cup of tea and a biscuit costs $£ 1.30$. A cup of tea costs 60 p more than a biscuit.
How much does a biscuit cost?

A cup of tea and a biscuit costs $£ 1.30$. A cup of tea costs 60 p more than a biscuit.
How much does a biscuit cost?

A cup of tea and a biscuit costs $£ 1.30$. A cup of tea costs 60p more than a biscuit.
How much does a biscuit cost?

Task 14 Prompts: Café calculations

Explain the mistake:

tea			$81.30 \div 2=65 p$
	${ }^{65 p}$		Tea $=£ 1.05$
biscuit	65p	60p	Biscuit $=65$

A cup of coffee and an apple costs £1.80.
The cup of coffee costs three times as much as the apple.
How much does a
cup of coffee cost?

The resource is comprised of 58 tasks, linked to all different areas of the upper KS2 mathematics curriculum.

I hope that I See Problem-Solving - UKS2 helps all children to develop their maths problem-solving skills!

Gareth Metcalfe

For use by the purchasing institution only. Copyright I See Maths Itd. Circulation is prohibited.

Task 1 Question: Sum of the digits

The sum of the digits for a whole-number is 6 .
All the digits are different.
What is the smallest that the number could be?
What is the largest that the number could be?
Example: the sum of the digits for 214 is $7(2+1+4=7)$

The sum of the digits for a whole-number is 6 .
All the digits are different.
What is the smallest that the number could be?
What is the largest that the number could be?
Example: the sum of the digits for 214 is $7(2+1+4=7)$

The sum of the digits for a whole-number is 6 .
All the digits are different.
What is the smallest that the number could be?
What is the largest that the number could be?
Example: the sum of the digits for 214 is $7(2+1+4=7)$

The sum of the digits for a whole-number is 6 .
All the digits are different.
What is the smallest that the number could be? What is the largest that the number could be?
Example: the sum of the digits for 214 is $7(2+1+4=7)$

Task 1 Prompts: Sum of the digits

I X Agree or disagree:
I P 'To make a large number when the sum of the digits is 6 ,
I A 'To make a large number where the sum of the digits is 6 ,

I E The sum of the digits for a whole-number is 11.
I All the digits are different.
E What is the largest that the number could be? I
What is the smallest that the number could be? I

Task 2 Question: Decimal number line

0.19 is half-way between the numbers in the two blue boxes. What numbers could be in the blue boxes?
Answer this question in two ways.

0.19 is half-way between the numbers in the two blue boxes. What numbers could be in the blue boxes?
Answer this question in two ways.

0.19 is half-way between the numbers in the two blue boxes. What numbers could be in the blue boxes?
Answer this question in two ways.

Task 2 Prompts: Decimal number line

| | | |
| :--- | :--- | ---: | ---: |
| I X | Example A: | |
| I P | | |
| 0.18 | 0.19 | 0.02 |

I L
I A
I | Example B:
I N

Task 3 Question: Rounding money

Rounded to the nearest $£ 10$, Alex has $£ 250$. Rounded to the nearest £100, Jim has £400. Alex and Jim have an exact amount in £ pounds. What is the greatest possible difference between the amount of money that Alex and Jim have?

Rounded to the nearest £10, Alex has £250. Rounded to the nearest £100, Jim has £400. Alex and Jim have an exact amount in £ pounds. What is the greatest possible difference between the amount of money that Alex and Jim have?

Rounded to the nearest £10, Alex has £250. Rounded to the nearest £100, Jim has £400. Alex and Jim have an exact amount in £ pounds. What is the greatest possible difference between the amount of money that Alex and Jim have?

Rounded to the nearest £10, Alex has £250. Rounded to the nearest £100, Jim has £400.
Alex and Jim have an exact amount in £ pounds. What is the greatest possible difference between the amount of money that Alex and Jim have?

Task 3 Prompts: Rounding money

I X Jim has £98 more than Alex.
${ }^{1}$ E How much money could Alex have?
IN List all possible amounts.

Task 4 Question: Rounding puzzles

Part 1: What is the largest whole number that, when rounded to the nearest 100, is 4000 ?
Part 2: What is the largest whole number that, when rounded to the nearest 200, is 4000 ?

Part 1: What is the largest whole number that, when rounded to the nearest 100, is 4000 ?

Part 2: What is the largest whole number that, when rounded to the nearest 200 , is 4000 ?

Part 1: What is the largest whole number that, when rounded to the nearest 100, is 4000 ?
Part 2: What is the largest whole number that, when rounded to the nearest 200, is 4000?

Part 1: What is the largest whole number that, when rounded to the nearest 100, is 4000 ?

Part 2: What is the largest whole number that, when rounded to the nearest 200 , is 4000 ?

Part 1: What is the largest whole number that, when rounded to the nearest 100, is 4000?

Part 2: What is the largest whole number that, when rounded to the nearest 200 , is 4000 ?

Task 4 Prompts: Rounding puzzles

Task 5 Question: Negatives on number line

Look at this number line:

The number in the red box is negative.
Which numbers could be in the red and blue boxes?
Challenge: think of two pairs of possible answers.

Look at this number line:

The number in the red box is negative.
Which numbers could be in the red and blue boxes?
Challenge: think of two pairs of possible answers.

Look at this number line:

The number in the red box is negative.
Which numbers could be in the red and blue boxes?
Challenge: think of two pairs of possible answers.

Task 5 Prompts: Negatives on number line

Task 6 Question: Number sequences

The first 3 terms of a sequence are positive whole numbers.
To find the next term in the sequence, the same number is subtracted.
-7 is the second negative number in the sequence.
Write the first 3 terms of the sequence.
There are different possible ways!
Example sequence: 9, 7, 5...
The second negative number in this sequence is -3

The first 3 terms of a sequence are positive whole numbers.
To find the next term in the sequence, the same number is subtracted.
-7 is the second negative number in the sequence.
Write the first 3 terms of the sequence.
There are different possible ways!
Example sequence: 9, 7,5...
The second negative number in this sequence is -3

Task 6 Prompts: Number sequences

Design a sequence that matches these rules:
 I E Design a sequence that marches these rules:

I x The first term in your sequence must be between 50 and 60 .
T To find the next term in the sequence, each time the same
E number is subtracted.
I $N-11$ is third negative number in the sequence.
Write the first 3 terms of this sequence.

Task 7 Question: More, less, equal

$$
\begin{aligned}
& 10-8<\square-\square \\
& 20>\square \times 3 \\
& \square+4=15-\square
\end{aligned}
$$

Fill the boxes, using each of these numbers once:

4, 5, 6, 7, 8

$$
\begin{aligned}
& 10-8<\square-\square \\
& 20>\square \times 3 \\
& \square+4=15-\square
\end{aligned}
$$

Fill the boxes, using each of these numbers once:

4, 5, 6, 7, 8

$$
10-8<\square-\square
$$

Fill the boxes, using

$$
20>\square \times 3
$$ each of these numbers once:

$$
\square+4=15-\square
$$

4, 5, 6, 7, 8

Task 7 Prompts: More, less, equal

Tip 1: There is only one box where you can put the 8 . Find it. I Tip 2: Work out which of the numbers can't go in this space.
Look at these answers to your question. Spot the mistakes.

Mistake 1:

Mistake 2:

$$
\begin{aligned}
& 10-8<8-7 \\
& 20>4 \times 3 \\
& 5+4=15-6
\end{aligned}
$$

$$
\begin{aligned}
& 10-8<8-4 \\
& 20>6 \times 3 \\
& 6+4=15-5
\end{aligned}
$$

Task 8 Question: Four number sentences

$$
\begin{array}{ll}
\square \times 3=18+\square \quad \begin{array}{l}
\text { Fill the boxes, us } \\
\text { each of these } \\
\text { numbers once: }
\end{array} \\
2<9-\square & 3,6,7,8,9 \\
\square \div 2<4 & \\
2 \times 2 \times 2 \times 2<\square+8 &
\end{array}
$$

Fill the boxes, using

$2<9-\square$

$$
\div 2<4
$$

$2 \times 2 \times 2 \times 2<\square+8$

$$
\begin{aligned}
& \square \times 3=18+\square \\
& 2<9-\square \\
& \square \div 2<4 \\
& 2 \times 2 \times 2 \times 2<\square+8
\end{aligned}
$$

Task 8 Prompts: Four number sentences

I A Mo: 'The number red box must be less than 8.1
I I Dan: 'The number red box must be less than 6 .'

Task 9 Question: Subtraction number sentences

H-25<35
$80-\mathrm{H}<39$
H is a multiple of 6

Find all the possible values for H

Find all the possible values for H

Task 9 Prompts: Subtraction number sentences

Task 10 Question: Missing digits addition

Fill in the missing digits in this calculation:

$$
\square 8 \square+3 \square 5=1052
$$

Fill in the missing digits in this calculation:

$$
\square 8 \square+3 \square 5=1052
$$

Fill in the missing digits in this calculation:

$$
\square 8 \square+3 \square 5=1052
$$

Fill in the missing digits in this calculation:

$$
\square 8 \square+3 \square 5=1052
$$

Fill in the missing digits in this calculation:

$$
\square 8 \square+3 \square 5=1052
$$

Task 10 Prompts: Missing digits addition

I Write a missing digits addition question. Requirements:

- The calculation is a 3-digit number plus a 3-digit number.
- At least 3 of the digits are hidden. The sum is shown.
- Your question can be answered in more than one way.

Possible answers: $181+363=544,281+263=544,381+163=544$

Task 11 Question: Missing digits subtraction

Fill in the missing digits in this calculation:

$$
6 \square 2-\square 3 \square=243
$$

Fill in the missing digits in this calculation:

$$
6 \square 2-\square 3 \square=243
$$

Fill in the missing digits in this calculation:

$$
6 \square 2-\square 3 \square=243
$$

Fill in the missing digits in this calculation:

$$
6 \square 2-\square 3 \square=243
$$

Fill in the missing digits in this calculation:

$$
6 \square 2-\square 3 \square=243
$$

Task 11 Prompts: Missing digits subtraction

Task 12 Question: Sum and difference

The sum of two numbers is 9 .
The difference between these two numbers is 4 .
What are the numbers?

The sum of two numbers is 9 .
The difference between these two numbers is 4 . What are the numbers?

The sum of two numbers is 9 .
The difference between these two numbers is 4 .
What are the numbers?

The sum of two numbers is 9 .
The difference between these two numbers is 4 .
What are the numbers?

The sum of two numbers is 9 .
The difference between these two numbers is 4 . What are the numbers?

Task 12 Prompts: Sum and difference

Task 13 Question: Four numbers challenge

> The sum of four whole numbers is 23 .
> The difference between the smallest and the largest number is 6 .

> All four numbers are different.
> What could the four numbers be?
> Find all the possible answers to this question.

The sum of four whole numbers is 23 .
The difference between the smallest and the largest number is 6 .

All four numbers are different.
What could the four numbers be?
Find all the possible answers to this question.

The sum of four whole numbers is 23 .
The difference between the smallest and the largest number is 6 .
All four numbers are different.
What could the four numbers be?
Find all the possible answers to this question.

Task 13 Prompts: Four numbers challenge

Task 14 Question: Café calculations

A cup of tea and a biscuit costs £1.30. A cup of tea costs 60p more than a biscuit.

How much does a biscuit cost?

A cup of tea and a biscuit costs £1.30. A cup of tea costs 60p more than a biscuit.
How much does a biscuit cost?

A cup of tea and a biscuit costs £1.30.
A cup of tea costs 60p more than a biscuit.

How much does a biscuit cost?

A cup of tea and a biscuit costs £1.30.
A cup of tea costs 60p more than a biscuit.

How much does a biscuit cost?

Task 14 Prompts: Café calculations

This bar model is split into 3 sections. I How big is each section?

I	A cup of coffee and an apple costs $£$
I ${ }_{\text {x }}$	The cup of coffee costs three times as
It	much as the apple.
IN	How much does a cup of coffee cost?

Task 15 Question: Multiplication missing digits
What are the missing digits?

Task 15 Prompts: Multiplication missing digits

Task 16 Question: Remainder of one-half

Complete the calculation using digits $0 \rightarrow 9$. You can only use each digit once. Position the digits 1,2 and 8 as shown.

Level 1: I can find an answer
Level 2: I can find different answers
Level 3: I know how many possible answers there are

Complete the calculation using digits $0 \rightarrow 9$. You can only use each digit once. Position the digits 1,2 and 8 as shown.

Level 1: I can find an answer
Level 2: I can find different answers
Level 3: I know how many possible answers there are

Complete the calculation using digits $0 \rightarrow 9$. You can only use each digit once. Position the digits 1,2 and 8 as shown.

Task 16 Prompts：Remainder of one－half

When dividing by 2 ，a remainder of 1 is equivalent to $\frac{1}{2} \quad$ ーーーー
Example： $13 \div 2=6$ remainder $1=6 \frac{1}{2}$
When dividing by 4 ，a remainder of 2 is equivalent to $\frac{1}{2}$
Example： $26 \div 4=12$ remainder $2=6 \frac{1}{2}$
When dividing by 8 ，a remainder of 4 is equivalent to $\frac{1}{2}$
Example： $52 \div 8=6$ remainder $4=6 \frac{1}{2}$

$$
\square \div 8=4 \frac{1}{2}
$$

$$
\square \div 4=8 \frac{1}{2}
$$

＇The number in the blue box is the same is the number
II in the red box．

Task 17 Question: Find the factors

Which of the digits from 1 to 9 are factors of 532?
List the digits that you know are/aren't factors of 532 without having to do any calculations.

Which of the digits from 1 to 9 are factors of 532?
List the digits that you know are/aren't factors of 532 without having to do any calculations.

Which of the digits from 1 to 9 are factors of 532?

List the digits that you know are/aren't factors of 532 without having to do any calculations.

Which of the digits from 1 to 9 are factors of $532 ?$
List the digits that you know are/aren't factors of 532 without having to do any calculations.

Which of the digits from 1 to 9 are factors of 532?
List the digits that you know are/aren't factors of 532 without having to do any calculations.

Task 17 Prompts: Find the factors

List all the 2-digit factors of 288.

E Reasoning sentence stems:
I I know that \square is a 2-digit factor of 288 so \square must E also be a factor of factor of 288.
IN The first 2-digit number I tried was... because... I know I have found all the possible answers because...

Task 18 Question: Number detective

The sum of the digits in a 2-digit number is 13 . The number is a multiple of 4 . What is the number?

The sum of the digits in a 2-digit number is 13 .
The number is a multiple of 4 .
What is the number?

The sum of the digits in a 2-digit number is 13 .
The number is a multiple of 4 .
What is the number?

The sum of the digits in a 2-digit number is 13 . The number is a multiple of 4 .
What is the number?

Task 18 Prompts: Number detective

I s Example:
IU 92 is a 2-digit number (the digits are 9 and 2)
I $\mathrm{P} \quad 92$ is a multiple of $4(23 \times 4=92)$
10
I R
The sum of the digits of 92 is $11(9+2=11)$
I T Tip: for your question, list the digits that add up to 13 .

$\frac{E}{X}$ The sum of the digits of 64 is 10 .
IP 'It's possible to keep the sum of the digits the same but change the size of the number by...'
Find different ways.
IN I
レ- I

I X The sum of the digits of a 3-digit number is 3 .
I T The number is a multiple of 3 .
I N List all the possible values for the number.

Task 19 Question: Athletics club ratios

In week 1 there were twice as many girls as boys at athletics club. Six more girls join athletics club in week 2. Now for every boy at athletics club there are three girls.

How many children go to athletics club in week 2?

In week 1 there were twice as many girls as boys at athletics club.
Six more girls join athletics club in week 2. Now for every boy at athletics club there are three girls.

How many children go to athletics club in week 2?

In week 1 there were twice as many girls as boys at athletics club. Six more girls join athletics club in week 2 . Now for every boy at athletics club there are three girls.

How many children go to athletics club in week 2?

In week 1 there were twice as many girls as boys at athletics club.
Six more girls join athletics club in week 2. Now for every boy at athletics club there are three girls.
How many children go to athletics club in week 2 ?

In week 1 there were twice as many girls as boys at athletics club. Six more girls join athletics club in week 2. Now for every boy at athletics club there are three girls.
How many children go to athletics club in week 2?

Task 19 Prompts: Athletics club ratios

Task 20 Question: Shot accuracy statistics

Julia Sanchez is a basketball player. Here are some statistics about her performance last season:

- She played 16 matches.
- On average, she scored 12 baskets per match.
- Last season, for every 3 shots she scored she missed one shot. How many times did Julia Sanchez shoot last season?

Julia Sanchez is a basketball player. Here are some statistics about her performance last season:

- She played 16 matches.
- On average, she scored 12 baskets per match.
- Last season, for every 3 shots she scored she missed one shot. How many times did Julia Sanchez shoot last season?

Julia Sanchez is a basketball player. Here are some statistics about her performance last season:

- She played 16 matches.
- On average, she scored 12 baskets per match.
- Last season, for every 3 shots she scored she missed one shot. How many times did Julia Sanchez shoot last season?

Task 20 Prompts: Shot accuracy statistics

Task 21 Question: Pages read, pages left

> I have read 40% of my book.
> I have 90 pages left to read.
> How many pages have I read so far?

I have read 40% of my book.
I have 90 pages left to read.
How many pages have I read so far?

I have read 40% of my book.
I have 90 pages left to read.
How many pages have I read so far?

I have read 40% of my book.
I have 90 pages left to read.
How many pages have I read so far?

I have read 40% of my book.
I have 90 pages left to read.
How many pages have I read so far?

Task 21 Prompts: Pages read, pages left

Task 22 Question: Clothes shop sales

A pair of trainers cost £32.
The shop had a sale.
Now the pair of trainers cost £24.
What is the percentage discount?

A pair of trainers cost £32.
The shop had a sale.
Now the pair of trainers cost £24.
What is the percentage discount?

SALE PRICE
£24

SALE PRICE

£24

A pair of trainers cost $£ 32$.
The shop had a sale.
Now the pair of trainers cost £24.
What is the percentage discount?

SALE PRICE
£24

A pair of trainers cost £32.
The shop had a sale.
Now the pair of trainers cost £24.
What is the percentage discount?

SALE PRICE
£24

Task 22 Prompts: Clothes shop sales

X Explain the mistake:
${ }^{P}$ P 'The trainers are $£ 8$ cheaper in the sale. $£ 8$ is onethird of £24. One-third as a percentage is 33% so the answer is 33\%.'

Task 23 Question: Fraction of square

What fraction of the square is blue?
The red spot is in the middle of the square.

Task 23 Prompts: Fraction of square

Task 24 Question: Adding fractions

$$
\frac{\square}{6}+\frac{1}{\square}=\frac{\square}{3} \begin{aligned}
& \text { The answer must be a proper fraction } \\
& \text { Level 1: I can find a way } \\
& \text { Level 2: I can find different ways } \\
& \text { Level 3: I know how many ways there are }
\end{aligned}
$$

$$
\frac{\square}{6}+\frac{1}{\square}=\frac{\square}{3} \begin{aligned}
& \text { The answer must be a proper fraction } \\
& \text { Level 1: I can find a way } \\
& \text { Level } 2: \text { I can find different ways } \\
& \text { Level 3: I know how many ways there are }
\end{aligned}
$$

The answer must be a proper fraction Level 1: I can find a way
Level 2: I can find different ways Level 3: I know how many ways there are

The answer must be a proper fraction Level 1: I can find a way Level 2: I can find different ways Level 3: I know how many ways there are

Task 24 Prompts: Adding fractions

I I
I N Explain why the fraction(s) you have chosen cannot be used.
I- -

Task 25 Question: Make one and a quarter

$\frac{3}{\square}+\frac{\square}{\square}=1 \frac{1}{4}$

The two fractions that are being added are proper fractions. Level 1: I can find a way Level 2: I can find three ways

$\frac{3}{\square}+\frac{\square}{\square}=\frac{\square}{4}$
 The two fractions that are being added are proper fractions. Level 1: I can find a way Level 2: I can find three ways

$\frac{3}{\square}+\frac{\square}{\square}=\frac{\square}{4}$
 The two fractions that are being added are proper fractions. Level 1: I can find a way Level 2: I can find three ways

$\frac{3}{\square}+\frac{\square}{\square}=\frac{\square}{4}$
 The two fractions that are being added are proper fractions. Level 1: I can find a way Level 2: I can find three ways

The two fractions that are being added are proper fractions.
Level 1: I can find a way Level 2: I can find three ways

Task 25 Prompts: Make one and a quarter

I I Explain your choices.
IN

Task 26 Question: Fractions of an amount

$\frac{2}{\square}$ of $\square=32$
 Level 1: I can find an answer
 Level 2: I can find three different answers

Level 1: I can find an answer
Level 2: I can find three different answers

$\frac{2}{\square}$ of $\square=32$
 Level 1: I can find an answer
 Level 2: I can find three different answers

Level 1: I can find an answer
Level 2: I can find three different answers
$\frac{2}{\square}$ of $\square=32$
Level 1: I can find an answer
Level 2: I can find three different answers

Task 26 Prompts: Fractions of an amount

1 S	Bar model for $\frac{3}{4}$ of $60=45$				Part of bar model for $\frac{2}{\square}$ of $\square=32$
$1 P$	60				
10	15	15	15	15	
1 R		45			32

Which is the correct word to finish this statement? Explain.

Task 27 Question: Improper fractions

$$
\frac{17}{\square}=2 \frac{\square}{\square} \quad \begin{aligned}
& \text { Level 1: I can find an answer } \\
& \text { Level 2: I can find different answers } \\
& \text { Level 3: I know how many possible } \\
& \text { answers there are }
\end{aligned}
$$

$\frac{17}{\square}=2 \frac{\square}{\square}$

Level 1: I can find an answer
Level 2: I can find different answers Level 3: I know how many possible answers there are

Level 1: I can find an answer
Level 2: I can find different answers Level 3: I know how many possible answers there are

Level 1: I can find an answer
Level 2: I can find different answers Level 3: I know how many possible answers there are

Level 1: I can find an answer
Level 2: I can find different answers Level 3: I know how many possible answers there are

Task 27 Prompts: Improper fractions

Task 28 Question: Make two and a quarter

$$
\frac{\square}{\square} \times \square=2 \frac{1}{4} \quad \begin{aligned}
& \text { Level 1: I can find an answer } \\
& \text { Level 2: I can find three different } \\
& \text { answers }
\end{aligned}
$$

$\frac{\square}{\square} \times \square=2 \frac{1}{4}$
Level 1: I can find an answer Level 2: I can find three different answers
$\frac{\square}{\square} \times \square=2 \frac{1}{4}$
Level 1: I can find an answer Level 2: I can find three different answers

Level 1: I can find an answer Level 2: I can find three different answers

Level 1: I can find an answer
Level 2: I can find three different answers

Task 28 Prompts: Make two and a quarter

Task 29 Question: Part-finished book

Megan has read $\frac{3}{5}$ of her book.
She has 90 pages left to read.
How many pages long is her book?

Megan has read $\frac{3}{5}$ of her book.
She has 90 pages left to read.
How many pages long is her book?

Megan has read $\frac{3}{5}$ of her book.
She has 90 pages left to read.
How many pages long is her book?

Megan has read $\frac{3}{5}$ of her book.
She has 90 pages left to read.
How many pages long is her book?

Task 29 Prompts: Part-finished book

Task 30 Question: Fractions and decimals

How many fractions can be made that are more than 0.5 and less than 0.8 using two of these digits?

$$
2,3,4,5
$$

How many fractions can be made that are more than 0.5 and less than 0.8 using two of these digits?

$$
2,3,4,5
$$

How many fractions can be made that are more than 0.5 and less than 0.8 using two of these digits?

$$
2,3,4,5
$$

How many fractions can be made that are more than 0.5 and less than 0.8 using two of these digits?

$$
2,3,4,5
$$

How many fractions can be made that are more than 0.5 and less than 0.8 using two of these digits?

$$
2,3,4,5
$$

Task 30 Prompts: Fractions and decimals

Task 31 Question: Combined weights

Ben and Sam weigh 90kg in total. Jack and Ben weigh 100kg in total. Sam and Jack weigh 80kg in total. How much does Sam weigh?

Ben and Sam weigh 90kg in total. Jack and Ben weigh 100kg in total.
Sam and Jack weigh 80kg in total.
How much does Sam weigh?

Ben and Sam weigh 90kg in total. Jack and Ben weigh 100kg in total.
Sam and Jack weigh 80kg in total.
How much does Sam weigh?

Ben and Sam weigh 90kg in total. Jack and Ben weigh 100kg in total.

Sam and Jack weigh 80kg in total.
How much does Sam weigh?

Task 31 Prompts: Combined weights

Task 32 Question: Sports ball weights

A golf ball and a tennis ball weigh 104g in total. A tennis ball and a cricket ball weigh 218 g in total. A tennis ball, a golf ball and a cricket ball weigh 264 g in total. How heavy is a cricket ball?

A golf ball and a tennis ball weigh 104g in total.
A tennis ball and a cricket ball weigh 218 g in total.
A tennis ball, a golf ball and a cricket ball weigh 264 g in total. How heavy is a cricket ball?

A golf ball and a tennis ball weigh 104 g in total.
A tennis ball and a cricket ball weigh 218 g in total.
A tennis ball, a golf ball and a cricket ball weigh 264 g in total. How heavy is a cricket ball?

A golf ball and a tennis ball weigh 104 g in total. A tennis ball and a cricket ball weigh 218 g in total. A tennis ball, a golf ball and a cricket ball weigh 264 g in total. How heavy is a cricket ball?

Task 32 Prompts: Sports ball weights

Task 33 Question: Hiring a surfboard

It costs $£ 7$ to hire a surfboard plus $£ 3$ per half-hour used. Kate goes surfing for 3 hours. It costs her \square to hire the surfboard. Jack goes surfing for \square hours. It costs him $£ 34$ to hire the surfboard.

It costs $£ 7$ to hire a surfboard plus $£ 3$ per half-hour used. Kate goes surfing for 3 hours. It costs her \square to hire the surfboard. Jack goes surfing for \square hours. It costs him $£ 34$ to hire the surfboard.

It costs $£ 7$ to hire a surfboard plus $£ 3$ per half-hour used.
Kate goes surfing for 3 hours. It costs her \square to hire the surfboard. Jack goes surfing for \square hours. It costs him $£ 34$ to hire the surfboard.

It costs $£ 7$ to hire a surfboard plus $£ 3$ per half-hour used.
Kate goes surfing for 3 hours. It costs her \square to hire the surfboard. Jack goes surfing for \square hours. It costs him £34 to hire the surfboard.

Task 33 Prompts: Hiring a surfboard

Task 34 Question: Doł pattern sequence

Picture 1:

4 dots

Picture 2:

7 dots

Picture 3:

10 dots

How many dots are there in:
(a) Picture 8
(b) Picture 16

Picture 1:
Picture 2:
$\circ \circ \bullet$
\bullet
\bullet
0
7 dots

Picture 3:

$\circ \circ \circ \circ \circ$
\bullet
$\bullet \circ$
10 dots

How many dots are there in:
(a) Picture 8
(b) Picture 16

Picture 1:

4 dots

Picture 2:

$\circ \circ \circ$
\circ
\bullet
\bullet
7 dots

Picture 3:

$\bullet \circ \bullet \circ \bullet$
\bullet
$\bullet \circ$
10 dots

How many dots are there in:
(a) Picture 8
(b) Picture 16

Picture 1:

4 dots

Picture 2:
\circ
\bullet
\bullet
\bullet
\bullet
\bullet
7 dots

Picture 3:

$\bullet \circ \bullet \circ \circ$
\bullet
$\bullet \circ$
10 dots

How many dots are there in:
(a) Picture 8
(b) Picture 16

Task 34 Prompts: Dot pattern sequence

1 S	Picture 1:	Picture 2:	Picture 3:	Notice: There
1 U	-	- - -	- - - -	are 4 dots in
P	-	-	-	the first pattern.
I P	\bigcirc	\bigcirc	\bigcirc	Each time, 3
$1 \bigcirc$	dots	-	10	dots are added
I R	4 dots	7 dots	10 dots	to make the

1 E	Agree or disagree?
I X	
1 T	Kara: 'There are 10 dots in the $3^{\text {ra }}$ picture, so in the $9^{\text {th }}$ picture there will be 30 dots.'
I E	
1 N	Lena: 'If you continue the pattern, there will be a picture with
1 D	361 dots.'

Task 35 Question: My secret number

I have a secret number. I multiply my secret number by 3 and add 7 . This makes a whole number in the $20 \mathrm{~s}(20 \rightarrow 29)$. What could my secret number be?
Find all the possible values for the secret number.

I have a secret number. I multiply my secret number by 3 and add 7. This makes a whole number in the 20s $(20 \rightarrow 29)$. What could my secret number be?
Find all the possible values for the secret number.

I have a secret number. I multiply my secret number by 3 and add 7 . This makes a whole number in the $20 \mathrm{~s}(20 \rightarrow 29)$. What could my secret number be?
Find all the possible values for the secret number.

I have a secret number. I multiply my secret number by 3 and add 7. This makes a whole number in the 20s $(20 \rightarrow 29)$. What could my secret number be?
Find all the possible values for the secret number.

Task 35 Prompts: My secret number

i E I have a secret number.
I X I multiply my secret number by \square and subtract \square
I T This makes a whole number in the $40 \mathrm{~s}(40 \rightarrow 49)$. for the secret number.

Task 36 Question: Sorting measures

Write different measures in each section of the Venn Diagram:

Task 36 Prompts: Sorting measures

Task 37 Question: Time spent driving

Lorna has a $\frac{3}{4}$ hour drive to work. She works every day from Monday to Friday, although she only works until lunchtime on Wednesday.
How long, in hours and minutes, does she spend driving to work each week?

Lorna has a $\frac{3}{4}$ hour drive to work. She works every day from Monday to Friday, although she only works until lunchtime on Wednesday.

How long, in hours and minutes, does she spend driving to work each week?

Lorna has a $\frac{3}{4}$ hour drive to work. She works every day from Monday to Friday, although she only works until lunchtime on Wednesday.

How long, in hours and minutes, does she spend driving to work each week?

Lorna has a $\frac{3}{4}$ hour drive to work. She works every day from Monday to Friday, although she only works until lunchtime on Wednesday.

How long, in hours and minutes, does she spend driving to work each week?

Task 37 Prompts: Time spent driving

Mistake 1:	Mistake 2:	Mistake 3:
$3 \times 5=\frac{15}{4}$	$3 \quad 30$	45 minutes $\times 10$
$\times 5=\frac{1}{4}$	$\times 10=\frac{3}{4}$	$=450$ minutes
$\frac{15}{4}=3 \frac{3}{4}$ hours	$=8$ hours 30 mins	$=4$ hours 50 mins

Task 38 Question: Lengths of time

Order these lengths of time from the shortest to the longest: 5400 minutes $\frac{1}{2}$ week 72 hours 4 days

Order these lengths of time from the shortest to the longest: 5400 minutes $\quad \frac{1}{2}$ week 72 hours 4 days

Order these lengths of time from the shortest to the longest: 5400 minutes $\quad \frac{1}{2}$ week 72 hours 4 days

Order these lengths of time from the shortest to the longest: 5400 minutes $\quad \frac{1}{2}$ week 72 hours 4 days

Order these lengths of time from the shortest to the longest: 5400 minutes $\quad \frac{1}{2}$ week 72 hours 4 days

Task 38 Prompts: Lengths of time

Task 39 Question: Ticket prices

It costs $£ \mathbf{1 4 . 1 0}$ for an adult and a child ticket to the zoo. It costs $\mathbf{£ 2 3 . 5 0}$ for an adult and three child tickets to the zoo. What is the cost for one child ticket at the zoo?

It costs $£ \mathbf{1 4 . 1 0}$ for an adult and a child ticket to the zoo. It costs $£ \mathbf{2 3 . 5 0}$ for an adult and three child tickets to the zoo. What is the cost for one child ticket at the zoo?

It costs $\mathfrak{£} \mathbf{1 4 . 1 0}$ for an adult and a child ticket to the zoo. It costs $£ \mathbf{2 3 . 5 0}$ for an adult and three child tickets to the zoo. What is the cost for one child ticket at the zoo?

It costs $\mathbf{£ 1 4 . 1 0}$ for an adult and a child ticket to the zoo. It costs $£ 23.50$ for an adult and three child tickets to the zoo. What is the cost for one child ticket at the zoo?

It costs $\mathbf{£ 1 4 . 1 0}$ for an adult and a child ticket to the zoo. It costs $\mathbf{£ 2 3 . 5 0}$ for an adult and three child tickets to the zoo. What is the cost for one child ticket at the zoo?

Task 39 Prompts: Ticket prices

Task 40 Question: Missing angles

Task 40 Prompts: Missing angles

Task 41 Question: Isosceles triangle angles

Task 41 Prompts: Isosceles triangle angles

Task 42 Question: Clock hands angles

What is the angle between the hands of a clock at 3:30pm?

What is the angle between the hands of a clock at 3:30pm?

What is the angle between the hands of a clock at 3:30pm?

What is the angle between the hands of a clock at 3:30pm?

Task 42 Prompts: Clock hands angles

Task 43 Question: Change the perimeter

For this task you will need some small squares.
Make a rectangle with an area of 24 squares. Make the perimeter as large as possible.

Example:

Area of this shape $=21$ squares
Perimeter of this shape $=20$

For this task you will need some small squares.
Make a rectangle with an area of 24 squares. Make the perimeter as large as possible.

Example:

$$
\text { Area of this shape }=21 \text { squares }
$$

Perimeter of this shape $=20$

For this task you will need some small squares.
Make a rectangle with an area of 24 squares. Make the perimeter as large as possible.

Example:

Area of this shape $=21$ squares
Perimeter of this shape $=20$

Task 43 Prompts: Change the perimeter

Task 44 Question: Rectangle length

The length of the rectangle is double its width.
The area of the rectangle, rounded to the nearest $100 \mathrm{~cm}^{2}$, is $200 \mathrm{~cm}^{2}$. The length and width of the rectangle are whole numbers (in cm).

NOT TO
SCALE

What is the smallest that the length of rectangle can be?

The length of the rectangle is double its width.
The area of the rectangle, rounded to the nearest $100 \mathrm{~cm}^{2}$, is $200 \mathrm{~cm}^{2}$. The length and width of the rectangle are whole numbers (in cm).

NOT TO
SCALE

The length of the rectangle is double its width.
The area of the rectangle, rounded to the nearest $100 \mathrm{~cm}^{2}$, is $200 \mathrm{~cm}^{2}$.
The length and width of the rectangle are whole numbers (in cm).

NOT TO
SCALE
What is the smallest that the length of rectangle can be?

Task 44 Prompts: Rectangle length

I E Draw a rectangle. Label the length and width.
X Draw a new rectangle with half the length and double the width.

Agree or disagree:

'The area of these two rectangles is the same.'
Describe what you notice.

Task 45 Question: Compound shape

Task 45 Prompts: Compound shape

Task 46 Question: Combined shapes

This shape is made using three identical rectangles.
Each rectangle has a length of 9 cm and a width of 4 cm .

What is the perimeter of the shape?

Task 46 Prompts: Combined shapes

Task 47 Question: Triangle area

The area of an isosceles right-angled triangle is less than $150 \mathrm{~cm}^{2}$.

What is the largest possible value for length B ?
Length B is a whole number.

The area of an isosceles right-angled triangle is less than $150 \mathrm{~cm}^{2}$.
What is the largest possible value for length B ?
Length B is a whole number.

The area of an isosceles right-angled triangle is less than $150 \mathrm{~cm}^{2}$.
What is the largest possible value for length B ?
Length B is a whole number.

The area of an isosceles right-angled triangle is less than $150 \mathrm{~cm}^{2}$.
What is the largest possible value for length B ?
Length B is a whole number.

Task 47 Prompts: Triangle area

Task 48 Question: Inside, edge or outside?

Are these coordinates on the inside, the edge or on the outside of the rectangle?

	Inside	Edge	Outside
$(6,10)$	$\boldsymbol{}$		
$(9,14)$			
$(14,9)$			
$(13,5)$			

		Are these coordinates on the inside, the edge or on the outside of the rectangle?			
			Inside	Edge	Outside
		$(6,10)$	\checkmark		
		$(9,14)$			
		(14,9)			
		$(13,5)$			

Are these coordinates on the inside, the edge or on the outside of the rectangle?

	Inside	Edge	Outside
$(6,10)$	\checkmark		
$(9,14)$			
$(14,9)$			
$(13,5)$			

Task 48 Prompts: Inside, edge or outside?

I E Agree or disagree:
IX
I P
'To work out the length of the left edge of the rectangle do $12-4$. It is $8 . '$
I A 'To work out the length of the bottom side of the rectangle do $14-4$. It is 10 .'

1 E	For the main task you were given all four coordinate
1 X	points for the vertices of the rectangle.
1 T 1 E IN	'We actually only needed to be given two of the coordinate points to answer the question.'
1 D	Explain why this statement is correct.

Task 49 Question: Which vertices?

Which of the vertices can be calculated? (see the red dots) Give the coordinate points of these vertices.

Which of the vertices can be calculated? (see the red dots) Give the coordinate points of these vertices.

Which of the vertices can be calculated? (see the red dots)
Give the coordinate points of these vertices.

Task 49 Prompts: Which vertices?

Task 50 Question: Branching database

Task 50 Prompts：Branching database

I E For each pair of shapes，what is the same and what it different？

I X		
	I P Pair of shapes $A:$	Pair of shapes B：

I L
I A
I
I N

Pair of shapes C ：

ᄂーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー」

Task 51 Question: Cube nets

Complete the cube net so...
There are 2 squares, 2 circles and 2 triangles drawn on the net (draw one shape in each face).
When the net is made into a cube, the shapes on the opposite faces will match.

Complete the cube net so...
There are 2 squares, 2 circles and 2 triangles drawn on the net (draw one shape in each face).
When the net is made into a cube, the shapes on the opposite faces will match.

Complete the cube net so...

There are 2 squares, 2 circles and 2 triangles drawn on the net (draw one shape in each face).
When the net is made into a cube, the shapes on the opposite faces will match.

Task 51 Prompts: Cube nets

Task 52 Question: Cuboid dimensions

This cuboid is made with two
squares and four rectangles.
The volume of the cuboid is $45 \mathrm{~cm}^{3}$.
The length of each edge, measured
in cm , is a whole number.
Label the length and width of the
rectangular faces of the cuboid.

Task 52 Prompts: Cuboid dimensions

Task 53 Question: Faces, edges, vertices

This is a square-based pyramid. The top of the square-based pyramid is cut off. This new shape is made. How many more faces, edges and vertices does the new shape have than the square-based pyramid?

This is a square-based pyramid.
The top of the square-based pyramid is cut off. This new shape is made. How many more faces, edges and vertices does the new shape have than the square-based pyramid?

Task 53 Prompts: Faces, edges, vertices

Task 54 Question: Before/now pie charts

At the start of term, there were 12 children in running club. These graphs tell you about the children at running club:

Year Group of Children at Running Club

Gender of Children at Running Club

This term, 4 children joined running club. Nobody left. These graphs tell you about the children at running club now:

Year Group of Children at Running Club

Gender of Children at Running Club

What do you know about the 4 children who joined running club?

Task 54 Prompts: Before/now pie charts

Task 55 Question: Bike race line graphs

Jen took part in a 40km bike ride. Here, she describes her race:
'I started the race quickly. There was a big uphill climb half-way through the race. I slowed down for the last 5 km but I did a sprint finish.'

Which graph shows Jen's performance in the race?

Jamie took part in a 20km bike race. He describes his ride:
'I started quickly - first 3km of the race was downhill. I slowed down after that, cycling at a similar speed in the middle part of the race. There was a long hill that started 15 km into the race. The fastest part of my race was the last 2 km .
Complete the graph of Jamie's performance in the race:

Task 55 Prompts: Bike race line graphs

Task 56 Question: Train timetables

Here is a train timetable for the morning trains from Sheffield to Newcastle:

Sheffield	$6: 20$	$7: 04$	$7: 58$	$8: 45$
Doncaster	$6: 47$	$7: 33$	$8: 25$	$9: 14$
York	$7: 14$	$8: 00$	$8: 52$	$9: 41$
Darlington	$7: 43$	$8: 29$	$9: 21$	$10: 11$
Durham	$8: 01$	$8: 48$	$9: 39$	$10: 30$
Newcastle	$8: 14$	$9: 01$	$9: 52$	$10: 43$

Stan is travelling from Doncaster to Durham. He gets to Doncaster train station at 7:35am.
When will he arrive in Durham?

Here is a train timetable for the morning trains from Sheffield to Newcastle:

Sheffield	$6: 20$	$7: 04$	$7: 58$	$8: 45$
Doncaster	$6: 47$	$7: 33$	$8: 25$	$9: 14$
York	$7: 14$	$8: 00$	$8: 52$	$9: 41$
Darlington	$7: 43$	$8: 29$	$9: 21$	$10: 11$
Durham	$8: 01$	$8: 48$	$9: 39$	$10: 30$
Newcastle	$8: 14$	$9: 01$	$9: 52$	$10: 43$

Stan is travelling from Doncaster to Durham. He gets to Doncaster train station at 7:35am. When will he arrive in Durham?

Here is a train timetable for the morning trains from Sheffield to Newcastle:

Sheffield	$6: 20$	$7: 04$	$7: 58$	$8: 45$
Doncaster	$6: 47$	$7: 33$	$8: 25$	$9: 14$
York	$7: 14$	$8: 00$	$8: 52$	$9: 41$
Darlington	$7: 43$	$8: 29$	$9: 21$	$10: 11$
Durham	$8: 01$	$8: 48$	$9: 39$	$10: 30$
Newcastle	$8: 14$	$9: 01$	$9: 52$	$10: 43$

Stan is travelling from Doncaster to Durham. He gets to Doncaster train station at 7:35am.
When will he arrive in Durham?

Task 56 Prompts: Train timetables

Task 57 Question: Average of 3 numbers

Three positive whole-numbers have an average of 6 .
The difference between the largest and the smallest of these numbers is 5 .
What are the three numbers?
There are two possible answers.

Three positive whole-numbers have an average of 6 .
The difference between the largest and the smallest of these numbers is 5 .
What are the three numbers?
There are two possible answers.

Three positive whole-numbers have an average of 6 . The difference between the largest and the smallest of these numbers is 5 .
What are the three numbers?
There are two possible answers.

Three positive whole-numbers have an average of 6 .
The difference between the largest and the smallest of these numbers is 5 .
What are the three numbers?
There are two possible answers.

Task 57 Prompts: Average of 3 numbers

Task 58 Question: Average ages

There were three children in the room, with an average age of 7 .

Then, Harry walked into the room. Now the average age of the people in the room is 9 .
How old is Harry?

There were three children in the room, with an average age of 7 .
Then, Harry walked into the room. Now the average age of the people in the room is 9 .
How old is Harry?

There were three children in the room, with an average age of 7 .

Then, Harry walked into the room. Now the average age of the people in the room is 9 .
How old is Harry?

There were three children in the room, with an average age of 7 .
Then, Harry walked into the room. Now the average age of the people in the room is 9 .
How old is Harry?

Task 58 Prompts: Average ages

I SEE PROBLEM-SOLVING - UKS2

Answers

There are worked examples for each of the main questions. They can be downloaded for free at www.iseemaths.com/problem-solving-uks2

Task 1: Sum of the digits: Smallest number $=15$, largest number $=3210$ Extend: smallest number $=29$, largest number $=53210$

Task 2: Decimal number line: Example answer 1: 0.18, 0.19, 0.2
Example answer 2: 0.09, 0.19, 0.29
Extend: line $1=0.015$ number line $2=0.11$ number line $3=0.01$
Task 3: Rounding money: Greatest difference: £449-£245 = £204
Explain: £449
Extend: Alex could have £252, £253 or £254
Task 4: Rounding puzzles: Part $1=4049$, part $2=4099$
Explain: box $1=100$, box $2=10$ (other numbers possible also)
Extend: (a) 2700 (b) 2600 (c) 2650 (d) 3000
Task 5: Negatives on a number line: Example answer 1:-5 and 100
Example answer 2: -20 and 130
Explain:

Extend: Example answers: -5 \& 35 -20 \& 40
Task 6: Number sequences: Example answers: 9,5,1 13, 8, 3 17, 11,5 Explain: first two sequences will include 0
Extend: Sequences go down in steps of 4 or 5 e.g. 54, 49, 44 53, 49, 45
Task 7: More, less, equal: Answer 1: 10-8<8-5 $20>6 \times 3 \quad 7+4=15-4$ Answer 2: 10-8<8-5 $20>6 \times 3 \quad 4+4=15-7$
Explain: Mistake 1: top equation. Mistake 2: 6 is used twice.
Extend: $8 \times \ldots=30-$ \qquad there are 3 ways ($1 \& 22,2 \& 14,3 \& 6$)
$53-\ldots=48+\ldots$ there are 4 ways ($1 \& 4,2 \& 3,3 \& 2,4 \& 1$)
$60 \div \ldots=10+\ldots$ there are 5 ways ($1 \& 50,2 \& 20,3 \& 10,4 \& 5,5 \& 2$)
$28 \div \ldots=\ldots \times 2$ there are 4 ways ($1 \& 14,2 \& 7,7 \& 2,14 \& 1$)

I SEE PROBLEM-SOLVING - UKS2

Answers

There are worked examples for each of the main questions. They can be downloaded for free at www.iseemaths.com/problem-solving-uks2

Task 8: Four number sentences: $8 \times 3=18+6 \quad 2<9-3 \quad 7 \div 2<4$
$2 \times 2 \times 2 \times 2<9+8$
Explain: Mo is correct (all possible answers will be less than 8), although more precise to say numbers must be less than 7 . Dan is incorrect
because the number in the red box could be 6 .
Extend: Set A can be used: numbers can be positioned in the same places as the main question, with the 5 replacing the 3.
Set B can't be used as there isn't a position for the 8.
Set C can be used: $9 \times 3=18+9 \quad 2<9-6 \quad 6 \div 2<4$
$2 \times 2 \times 2 \times 2<9+8$
Task 9: Subtraction number sentences: $42,48,54$.
Explain: True number sentences: $25-60<35 \quad 80-42<39$
Extend: $\quad \mathrm{H}-\mathbf{2 5}<\mathbf{3 5}$ make the number in bold in the range $38 \rightarrow 44$ $\mathrm{H}-25<35$ make the number in bold in the range $48 \rightarrow 54$ $80-\mathrm{H}<39$ make the number in bold in the range $62 \rightarrow 68$ $80-\mathrm{H}<39$ make the number in bold in the range $51 \rightarrow 59$ Change the last line to ' H is a multiple of 3 '

Task 10: Missing digits addition: $687+365=1052$
Explain: Example 1 one way $(162+183=345)$
Example 2 four ways $(347+239=586,247+339=586,147+439=586$,
$447+139=586)$
Example 3 one way $(650+498=1148)$
Task 11: Missing digits subtraction: 682-439 = 243
Explain: Example A: 337-154 = 183 (involves regrouping)
Example B: 889-652 = 237 (no regrouping)
Extend: Example answer: 1098-675 = 423 (note that the digit 1 has to go in the thousands position)

I SEE PROBLEM-SOLVING - UKS2

Answers
There are worked examples for each of the main questions. They can be downloaded for free at www.iseemaths.com/problem-solving-uks2

Task 12: Sum and difference: 6.5 and 2.5
Explain: 9 \& 5 11\&3
Extend: Statement 1 is true: the sum of two whole numbers with a difference of 3 is always odd.
Statement 2 is true if one of the numbers is zero, e.g. 0 and 4 have a sum of 4 and a difference of 4 .

Task 13: Four numbers challenge: 3 sets of possible answers: $2,6,7,8$ $3,5,6,9 \quad 3,4,7,9$
Explain: If the largest number was 7 then the smallest number would have to be 1 for there to be a difference of 6 between the largest and smallest numbers. The other two numbers would have to add up to 15 ($7+1+15=23$). It is not possible for two numbers to add up to 15 without one of the numbers being larger than 7 .
Extend: $45.57 .58 \quad 4678 \quad 4.5578 .5 \quad 4.55 .56 .58 .5$
Task 14: The café: Biscuit $=35$ p.
Explain: The difference between the cost of the tea and the biscuit was not subtracted from $£ 1.30$ before it was halved. Based on these calculations, the total cost would be $£ 1.70$ rather than $£ 1.30$.
Extend: Coffee = £1.35 (apple = 45p)
Task 15: Multiplication missing digits: 68×43
Extend: 46×87
Task 16: Remainder of one-half: $60 \div 8=7 \frac{1}{2} \quad 36 \div 8=4 \frac{1}{2} \quad 76 \div 8=9 \frac{1}{2}$
Explain: Disagree: blue box $=36$, red box $=34$
Extend: 5 ways: $26 \div 8=3 \frac{1}{4} \quad 50 \div 8=6 \frac{1}{4} \quad 60 \div 8=7 \frac{2}{4} \quad 76 \div 8=9 \frac{2}{4}$
$62 \div 8=7 \frac{3}{4}$
Task 17: Find the factors: 1, 2, 4, 7
Explain: Disagree: half the multiples of 4 are not multiples of 8
Extend: $96,72,48,36,32,24,18,16,12$

I SEE PROBLEM-SOLVING - UKS2

Answers

There are worked examples for each of the main questions. They can be downloaded for free at www.iseemaths.com/problem-solving-uks2

Task 18: Number detective: 76
Explain: Change the digits used (e.g. 64 becomes 73); change the position of the digits (e.g. 64 becomes 46); change the number of digits (e.g. 64 becomes 640)
Extend: 102, 120, 201, 210, 111
Task 19: Athletics club ratios: 24 children
Explain: Answer 1 is correct. Divide 36 by $\mathbf{4}$ for a ratio of 3:1
Extend: Q1:36 boys Q2: 150 children Q3: 135 girls
Task 20: Shot accuracy statistics: 192 shots
Explain: Julia and Zoe score with $\frac{3}{4}$ of their shots. Joy is the odd one out.
Extend: Zaynah scored 16 times in the first half with a scored:missed ratio of $4: 1$, so she scored 12 more shots than she missed. This
difference between shots scored and shots missed stays the same in the second half. To finish the game with a scoring ratio of 2:1 she scores with 24 shots and misses with 12 . In total this is 36 shots.

Task 21: Pages read, pages left: 60 pages
Explain: Mistake 1:90 is not the whole number of pages in the book.
Mistake 2: the question asks how many pages have been read.
Extend: 24 is 60% of $40 \quad 12$ is 40% of $30 \quad 56$ is 80% of 70
Task 22: Clothes shop sales: 25% discount
Explain: To calculate the \% discount work out the percentage discount from the start price, not the sale price.
Extend: £64
Task 23: Fraction of square: $\frac{3}{8}$
Explain: The parts are the same size but the whole has changed so the fractions made are incorrect.
Extend: $\frac{3}{8} \quad \frac{3}{16}$

I SEE PROBLEM-SOLVING - UKS2

Answers

There are worked examples for each of the main questions. They can be downloaded for free at www.iseemaths.com/problem-solving-uks2

Task 24: Adding fractions: $\frac{1}{6}+\frac{1}{6}=\frac{1}{3} \quad \frac{1}{6}+\frac{1}{2}=\frac{2}{3} \quad \frac{2}{6}+\frac{1}{3}=\frac{2}{3} \quad \frac{3}{6}+\frac{1}{6}=\frac{2}{3}$
Explain: $\frac{1}{12}$ can not be used. $\frac{1}{3}=\frac{4}{12}$ and $\frac{2}{3}=\frac{8}{12}$ and you can' \dagger add a fraction in sixths to $\frac{1}{12}$ to make either of these fractions.
Extend: Jim is correct: $\frac{1}{4}+\frac{2}{8}=\frac{6}{12} \quad \frac{1}{4}+\frac{4}{8}=\frac{9}{12} \quad \frac{2}{4}+\frac{2}{8}=\frac{9}{12}$
Task 25: Make one and a quarter: Examples: $\frac{3}{4}+\frac{1}{2}=1 \frac{1}{4} \quad \frac{3}{6}+\frac{3}{4}=1 \frac{1}{4}$
$\frac{3}{8}+\frac{7}{8}=1 \frac{1}{4}$
Explain: $\frac{19}{10}+\frac{7}{6}$
Extend: $\frac{3}{4}+\frac{4}{8}=1 \frac{1}{4} \quad \frac{3}{8}+\frac{7}{8}=1 \frac{1}{4} \quad \frac{3}{6}+\frac{6}{8}=1 \frac{1}{4} \quad \frac{3}{4}+\frac{6}{8}=1 \frac{2}{4}$
Task 26: Fractions of an amount: Examples: $\frac{2}{3}$ of $48=32 \quad \frac{2}{4}$ of $64=32$
$\frac{2}{5}$ of $80=32$
Explain: decreases
Extend: For question A two ways: $\frac{1}{3}$ of $180=60 \quad \frac{2}{3}$ of $90=60$
For question B an infinite number of ways (the denominator can always become larger, making the missing number larger).
Task 27: Improper fractions: 3 ways: $\frac{17}{6}=2 \frac{5}{6} \quad \frac{17}{7}=2 \frac{3}{7} \quad \frac{17}{8}=2 \frac{1}{8}$
Explain: $\frac{14}{4} \quad \frac{11}{3} \quad \frac{19}{5}$
Extend: Example answer $\frac{26}{6} \quad \frac{33}{7}$
Task 28: Make two and a quarter: Examples: $\frac{1}{4} \times 9=2 \frac{1}{4} \quad \frac{3}{4} \times 3=2 \frac{1}{4}$ $\frac{3}{8} \times 6=2 \frac{1}{4}$
Explain: The same: $\frac{3}{4}+\frac{3}{4}+\frac{3}{4}+\frac{3}{4}+\frac{3}{4} \quad \frac{1}{4} \times 15 \quad \frac{15}{4}$
Extend: Two ways: $\frac{6}{8} \times 5=3 \frac{3}{4} \quad \frac{5}{8} \times 6=3 \frac{3}{4}$

I SEE PROBLEM-SOLVING - UKS2

Answers

There are worked examples for each of the main questions. They can be downloaded for free at www.iseemaths.com/problem-solving-uks2

Task 29: Part-finished book: 225 pages
Explain: Mistake 1:90 is not the whole. Mistake 2: 90 is the $\frac{2}{5}$ of the book she has left to read, not the $\frac{3}{5}$ that she has read.
Extend: Olympic Stories 240 pages. Jack's Big Surprise 150 pages.
Task 30: Fractions and decimals: $\frac{2}{3} \quad \frac{3}{4} \quad \frac{3}{5}$
Extend: $\frac{4}{6} \quad \frac{5}{8} \quad \frac{6}{8} \quad \frac{6}{10} \quad \frac{8}{12}$
Task 31: Combined weights: Sam weighs 35 kg .
Explain: shorter
Extend: Steph and Alice must weigh the same because, when weighed with Julie, the combined weights are the same $(80 \mathrm{~kg})$.
However, Julie may be lighter or heavier than 40kg (e.g. she may weigh 45 kg and Steph and Alice could each weigh 35 kg).
Task 32: Sports ball weights: Cricket ball $=160 \mathrm{~g}$
Explain: There is not enough information to know whether statement 1 is correct. Statement 2 is correct.
Extend: Volleyball = 270 g . Compare statements 1 and 3 to show a football is 10 g heavier than a netball. Use statement 2 to work out a football $=430 \mathrm{~g}$ and a netball $=420 \mathrm{~g}$. Then insert these weights in statement 1 or 3 to establish the weight of the volleyball.
Task 33: Hiring a surfboard: It costs Kate £25. Jack surfs for $4 \frac{1}{2}$ hours. Explain: The price change makes it more expensive to hire a surfboard for $2 \frac{1}{2}$ hours or less, the same price to hire for 3 hours and cheaper to hire for longer than 3 hours.
Extend: Raja expected to pay $£ 7$ plus $£ 3$ per full half-hour (7 half-hours) and $£ 1.50$ for the final 15 minutes (half of the half-hour cost). The shopkeeper charged him £7 plus 8 half-hours even through he didn' \dagger use the surfboard for all of the last half-hour.

I SEE PROBLEM-SOLVING - UKS2

Answers

There are worked examples for each of the main questions. They can be downloaded for free at www.iseemaths.com/problem-solving-uks2

Task 34: Dot pattern sequence: Picture $8=25$ dots. Picture $16=49$ dots.
Explain: Sequence 1 is not one of the times tables. Sequence 2 does not go up in steps of 3 . Sequence does not start with 4.
Extend: Kara is incorrect.
$9^{\text {th }}$ term as an addition number sentence: $4+3+3+3+3+3+3+3+3$
$9^{\text {th }}$ term as 3 lots of 3 rd term: $4+3+3+4+3+3+4+3+3$ (not the same)
Lena is correct: 361 is the $120^{\text {th }}$ term because $3 \times 120+1=361$.
Task 35: My secret number: 5,6 or 7
Explain: 9, 10, 11, 12 (four numbers)
Extend: Example answer 1: multiply by 8 and subtract 7
Example answer 2: multiply by $\mathbf{5}$ and subtract $\mathbf{2}$
Task 36: Sorting measures:
Explain: Yards are not metric. Kilograms measure weight. Extend: decade - time lux - light
light year - length
centigrade - temperature acre - area

Task 37: Time spent driving: 7 hours 30 minutes each week
Explain: Mistake 1: 10 journeys per week, not 5 journeys.
Mistake 2: incorrect conversion of improper fraction.
Mistake 3: incorrect conversion of 450 minutes into hours and minutes.
Extend: 104 weekend days +35 days off $=139$ days not working.
$365-139=226$ days working per year (non-leap year).
226 days $\times 1 \frac{1}{2}$ hours driving per day $=339$ hours driving
Note: this is 14 days and 3 hours of driving.

I SEE PROBLEM-SOLVING - UKS2

Answers

There are worked examples for each of the main questions. They can be downloaded for free at www.iseemaths.com/problem-solving-uks2

Task 38: Lengths of time: Ordered shortest to longest: 72 hours, $\frac{1}{2}$ week, 5400 minutes, 4 days.
Explain: 60 hours $=2 \frac{1}{2}$ days 60 seconds $=1$ minute
60 days $=8 \frac{4}{7}$ weeks (or 8 weeks and 4 days)
60 days is approximately 2 months, depending on which months.
Extend: 198 hours $=8 \frac{1}{4}$ days, so 8 days and 6 hours ago
Task 39: Ticket prices: $£ 4.70$
Explain: 3
Extend: written algebraically with $a=$ adult ticket and $c=c h i l d ~ t i c k e t: ~$
$2 a+c=£ 14.60$
$3 a+2 c=£ 23.60$
This shows one extra adult ticket and one extra child ticket costs £9
$a+c=£ 9$
Look at the top formula. An adult ticket must cost £14.60-£9 = £5.60
Task 40: Missing angles: Angle $a=75^{\circ}$
Explain: Statements 1 and 4 are true
Extend: Angle $b=50^{\circ}$ (other angles in the triangle are 98° and 32°)
Task 41: Isosceles triangle angles: Angle e $=286^{\circ}$
Explain: Angle e is smaller than angle $f\left(e=286^{\circ}, f=288^{\circ}\right)$
Extend: Agree: $180^{\circ}-$ red angle $=$ missing angle 180° - (blue angle + blue angle) $=$ missing angle

Task 42: Clock hands angles: 75°

Explain: The hour hand is half-way between 12 and 1 at 12:30pm
Extend: Angle between each hour $=30^{\circ}$
Minute hand is $\frac{2}{3}$ around clockface so hour hand has moved $\frac{2}{3}$ of the distance from 9 to 10 . This is 20°. Add one hour section of 30°.
$30^{\circ}+20^{\circ}=50^{\circ}$

I SEE PROBLEM-SOLVING - UKS2

Answers

There are worked examples for each of the main questions. They can be downloaded for free at www.iseemaths.com/problem-solving-uks2

Task 43: Change the perimeter: Maximum perimeter $=50$ when squares arranged in a line (a rectangle with dimensions 24×1)
Explain: Area: shape B ($15 \mathrm{~cm}^{2}$), shape C $\left(20 \mathrm{~cm}^{2}\right)$, shape A $\left(25 \mathrm{~cm}^{2}\right)$ Perimeter: shape A $(20 \mathrm{~cm})$, shape C $(24 \mathrm{~cm})$, shape $B\left(32 \mathrm{~cm}^{2}\right)$
Extend: $7 \mathrm{~cm} \times 6 \mathrm{~cm}$ rectangle (area $=42 \mathrm{~cm}^{2}$, perimeter $=26 \mathrm{~cm}$)
Task 44: Rectangle length: Length $=18 \mathrm{~cm}$
Explain: Statement 1 is true. Statement 2 is false: doubling the length of the sides of a square quadruple it's area.
Extend: notice that, for rectangles with the same perimeter, as a rectangle gets thinner the area decreases and vice versa.
Task 45: Compound shape: $90 \mathrm{~m}^{2}$
Explain: The area of the top-left section of the shape is included in both parts of the calculation, making the answer too big. Extend: example shape with area $79 \mathrm{~cm}^{2}$

Task 46: Combined shapes: 52 cm
Explain: Agree. The length of the sides in the middle section of the shape is increased.
Extend: Challenge 1 example:

Task 47: Triangle area: Largest length $B=17 \mathrm{~cm}$
Explain: Shape A does not have an area of $49 \mathrm{~cm}^{2}$. Shape B is not a triangle. Shape C has 3 sides of a different length.
Extend: Length C is $23 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$, or 26 cm
Task 48: Inside, edge or outside? $(9,14)$ outside $(14,9)$ edge $(13,5)$ inside
Explain: Statement 1 correct. Statement 2 incorrect (should be 14-2).
Extend: All four coordinates can be calculated given one pair of opposite corner coordinates.

I SEE PROBLEM-SOLVING - UKS2

Answers

There are worked examples for each of the main questions. They can be downloaded for free at www.iseemaths.com/problem-solving-uks2

Task 49: Which vertices? $A=(4,9), D=(4,2), x$ coordinate of B and C unknown.
Explain: The y coordinate of $(4,5)$ was used as the x coordinate of A . The correct x coordinate for A is 4 .
Extend: Any point on the edge between or on points B and C so the x coordinate of B and C can be determined.
Task 50: Branching database:

Example 1:

Example 2:

Explain: Pair A: opposite sides/angles equal; difference in angles.
Pair B: two pairs of equal length sides; adjacent sides same length on kite, opposite angles same length on rectangle.
Pair C: three identical angles/sides; one shape a pentagon and the other shape a hexagon.
Extend: First shape is a hexagon. Second shape has no lines of symmetry. Third shape is regular. Fourth shape has acute angles.
Task 51: Cube nets: Completed net Explain: First shape only 5 faces. Second shape the net of a cuboid.
Third shape has one face that folds over itself.
 Extend:

I SEE PROBLEM-SOLVING - UKS2

Answers

There are worked examples for each of the main questions. They can be downloaded for free at www.iseemaths.com/problem-solving-uks2

Task 52: Cuboid dimensions: length $=5 \mathrm{~cm}$ width $=3 \mathrm{~cm}$
Explain: (c) 8 smaller cubes fit in the larger cube
Extend: (a) Double the length of one of the sides
Task 53: Faces, edges, vertices: 1 extra face, 4 extra edges, 3 extra vertices
Explain: Statement 1: always. Statement 2: sometimes. If you cut off the top of a pyramid, the number of faces, edges and vertices increases. If you cut off the bottom of a pyramid the number of faces, edges and vertices is unchanged.
Extend: First shape: 1 square and 4 triangles.
Second shape: 2 squares and 4 trapeziums.
Task 54: Before/now pie charts: 4 more boys. 2 more from Y4, 1 more from Y5, 1 more from Y6.
Explain: All children who joined running club were boys. The running club is still made up of children from year 4, so half of the children who joined running club were from year 4.
Extend: Currently there are 16 children at running club. 4 of these children are from year 5 and 12 from other year groups. For half the children to be from year 5, there must be 8 more children joining from year 5 . This means there are 12 children from year 5 and 12 children from other year groups.

Task 55: Bike race line graphs: Part 1: The first graph (blue line).
Part 2 example graph:

I SEE PROBLEM-SOLVING - UKS2

Answers

There are worked examples for each of the main questions. They can be downloaded for free at www.iseemaths.com/problem-solving-uks2

Task 55: Bike race line graphs (continued):

Explain: The second statement is correct. The speed of the cyclist is at its slowest here, but the rider is still moving.
Extend: Nada started the race slightly faster than Amy. Then both riders slowed down, but Nada slowed down a lot more than Amy. Both cyclists then start cycling more quickly. There is a second fall in their speeds, but Amy's reduction in speed is much smaller than Nada's. Nada has a slightly faster finish. Amy will finish the race before Nada because her overall average speed is higher.
Task 56: Train timetables: 9:39
Explain: The first statement confuses the time the first train arrives (8:14) with the time the last train leaves Sheffield train station. The second statement is incorrect because a passenger arriving in York train station at $7: 15$ will miss the first train by 1 minute.
Extend: the 8:00 train from York is expected to arrive in time for the interview. However, Jen is likely to want to arrive earlier than this considering that she is going to a job interview. The 7:14 train from York may be more suitable. It is also advisable to arrive at a train station a few minutes before your expected departure time.

Task 57: Average of 3 numbers: $3,7,8$ or 4, 5, 9
Explain: Example 1: there are four number. Example 2: The average is not 6 (the 3 numbers have a sum of 19, not 18). Example 3: the difference between the smallest and largest number is 4 , not 5 .
Extend: 5 ways: $5,6,9,10 \quad 5,7,8,10 \quad 5,5,10,10 \quad 6,7,8,11 \quad 6,6,9,11$
Task 58: Average ages: Harry is 15 years old.
Explain: The first statement is possible: the sum of the three children's ages must be 24 . The second statement is possible: the sum of the 3 children's ages must be 27 so if the sum of the other two children's ages is 6 the brothers will have an average age 9 .
Extend: Jenna is 5 years old (the twins are both 11 years old).

I SEE MATHS RESOURCES

A range of resources for developing deep, visual mathematics can be found at www.iseemaths.com

The I See Reasoning eBooks provide a range of thought-provoking tasks and questions for embedding reasoning in daily lessons. For further information, click on the links below:

I See Reasoning - UKS2

I See Reasoning - LKS2
I See Reasoning - KS 1
iPad app Logic Squares, ideal for children in KS2, gets children applying calculation facts and thinking strategically. Numbers have to be positioned to complete the crossword-style number sentences.

Information about conferences and in-school training led by Gareth Metcalfe can be found at www.iseemaths.com

Social Media:

Twitter: @gareth_metcalfe
Facebook: Gareth Metcalfe Primary Maths
Pinterest: I See Maths

